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ABSTRACT 

 Scheduling inbound calls, namely assigning calls to Customer Service Representatives (CSRs) 

and sequencing the calls waiting for each CSR, is a key task in call center operations. In most call center 

this is achieved using simple priority rules, but in this dissertation we show that performance can be 

significantly improved by employing an optimization approach. Specifically, we formulate three different 

Integer Programming (IP) problems for such call scheduling, with objective functions of 1) minimizing 

the Total Flow Time (TFT), 2) minimizing the Maximum Flow Time (MFT) of any call, and 3) 

minimizing the Maximum Deviation of Cumulative Assigned Workload (MDCAW) for CSRs. We also 

report the results of a numerical experiment designed to evaluate under what conditions these IP 

formulations give superior performance and which objective should be chosen. Our findings indicate that 

optimization is most valuable under realistic scenarios involving specialized but broadly trained CSRs and 

high call centre utilization rates. Furthermore, both the flow time and workload related objective functions 

are found to be useful, depending on the characteristics of the call center and the performance measures 

that are most important to call center management. We explore several solution techniques such as IP 

reformulation, Lagrangian relaxation and duality, cutting plane algorithm, and heuristic approach for 

solving the formulated IPs. For those solution algorithms, the qualities of the solution and the 

computational times of solving the IPs using a standard solver are compared to signify the effective 

approaches that make the optimization a competitive approach for scheduling inbound calls. Numerical 

results show that the heuristics optimization approach is preferable to any other solution investigated in 

terms of solution quality while the cutting plane algorithm is preferable in terms of computational times. 
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Additionally, a case study comparing performances of a call center as resulted from using its current 

routing method with the performance resulted from the suggested solution techniques is presented. 
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CHAPTER 1. INTRODUCTION 

 Call centers have become an integral part of doing business as many companies use 

call centers for customer interactions such as selling products and services, providing product 

support, and resolving billing issues (Cezik et al., 2001). The three main components of any 

call center are the customers (or calls), the technologies employed, and the customer service 

representatives (CSRs). Customers are typically categorized according to the flow direction 

of the call as either inbound call (or incoming call) or outbound call (or outgoing call). Call 

centers are categorized accordingly based on the calls they process, that is, as inbound call 

centers, outbound call centers, or mixed call centers (Gans et al., 2003). Various technologies 

are deployed to assist the communication process between customers and CSRs. This 

includes computer telephony integration (CTI), networking hardware, automated call 

distribution (ACD), private branch exchange (PBX) phone switch, interactive voice response 

(IVR), and the necessary software (Sharp, 2003).  

 Since different customers have diverse demands, many call centers have CSRs that 

are skilled to deal with various types of calls. However, most CSRs are specialized in certain 

calls while only trained on others, which makes the process of matching calls to the proper 

CSRs vital to providing efficient service. There is therefore a need for effective methods for 

scheduling inbound calls, which in most call centers is handled by an ACD system that is 

used to distribute calls among idle qualified CSRs based on a set of rules (Koole and 

Mandelbaum, 2002). Selecting the most appropriate method for this task is not trivial. There 

are numerous simple approaches, such as first come first served (FCFS) and skill based 

routing (SBR). However it is not possible to find a simple method that will work best for all 

call centers at all times. Each call center much therefore identify a suitable method based on 

its characteristics in order to achieve the greatest benefits from both a business and employee 

viewpoint. 
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1.1 Problem statement 

 This research addresses the problem of scheduling inbound calls, namely assigning 

inbound calls to customer service representatives (CSRs) and sequencing the calls waiting for 

each CSR in call centers. Our intent is to show that the performance of call centers can be 

improved by employing an optimization approach for this scheduling problem, and at the 

same time designing efficient solution algorithms for the problem.  

1.2 Research motivation and significance 

 Nowadays, as we live in a service era, customer satisfaction is viewed as the top key 

business priorities of most industries. Thus providing “Service when customers need it.” has 

become an important strategy to provide the superior experience and enhance the customer 

satisfaction. Many companies use call centers to provide effective interactions with their 

customers. Therefore there is a huge market for call centers all over the world, which 

continues to grow each year. For most call centers, inbound call scheduling is one of the 

critical business functions. With an effective call scheduling policy, the call center can not 

only offer better service, but also the increasing its performance. Hence the development of 

an approach to provide solutions for call scheduling problem is significance and in fact 

essential. 

 This research will provide call centers with alternative approaches for inbound calls 

scheduling. This will not only be a more systematic approach than previously available, but 

the proposed approach also provides good solutions which consequently results in improved 

call center performance. This will benefit both call centers and customers 

1.3 Research objective 

 The main objective of this research is an effective approach for scheduling inbound 

calls in call centers. To achieve the objective two main tasks are needed: 1) develop an IP 

formulation to model inbound calls scheduling in call center and, 2) explore solution 

algorithms to effectively solve those IPs. Precisely what constitutes an effective approach in 

this context will be defined in Chapter 4. 
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1.4 Scope of the research 

 This research deals with the problem of scheduling inbound calls in call centers by 

first formulating it as an integer programming (IP) problem. Three different objective 

functions are used: minimizing the total flow time (TFT), minimizing the maximum flow 

time (MFT), and minimize the maximum deviation of cumulative assigned workload 

(MDCAW). For each approach call center performances, including the number of calls, the 

total flow time, the flow time and the waiting time of each call, the amount of workload 

assigned to each CSR, and the service level, are examined through a numerical experiment. 

Through the experiment, the preliminary results show that, under various environment 

setting, the performance of call centers can be significantly improved by employing an 

optimization approach to schedule inbound calls. Particularly, the optimization approach is 

most valuable under realistic scenarios involving specialized but broadly trained CSRs and 

high call center utilization rates. Hence, this motivates the need for the optimization 

approach.  

 Secondly, given the IP formulation, this research will explore several solution 

techniques such as IP reformulation, Lagrangian relaxation and duality, generating valid 

inequalities (cutting planes), and heuristics for solving the formulated IPs. For each of those 

proposed solution algorithms, the quality of the solution and the computational time needed for 

solving the problem are compared. 

1.5 Contribution of the research 

 The contribution of this work is the novel IP formulation of inbound call scheduling, 

which to the best of our knowledge has not been considered before, and the insights that are 

obtained by solving the corresponding IPs. In particular, we show that for many call centers 

it is possible to significantly improve performance by optimizing the inbound call schedule. 

Furthermore, we characterize call centers where such an optimization approach is the most 

beneficial and provide managerial insights into what type of optimization problem should be 

solved based on the call center characteristics and which performance measures are of most 

interest. Besides the developed formulation, our investigation on the problem-solving 

performances of the proposed solution algorithms also serves as a guide line for selecting the 
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suitable solution algorithm. It offers an idea of which method will be efficient for solving call 

scheduling problem based on their values on the performances. 

1.6 Summary of subsequent chapters 

 This dissertation is organized as follows. A research background, consisting of a 

review of existing call center related literature and an overview of IP, is given in the Chapter 

2. Chapter 3 introduces our IP models as instruments to handle inbound calls scheduling task 

and examines the effectiveness of the models. Chapter 4 discusses and analyzes four 

purposed solution techniques. Chapter 5 presents a case study examined the potential of 

using IP approach for call scheduling problem in a real call center. Finally, Chapter 6 

describes conclusions and further research directions. 
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CHAPTER 2. RESEARCH BACKGROUND 

 This chapter is organized into two sections. The first section provides a review of 

literature related to call centers. The second section offers an overview of the theoretical 

knowledge related to Integer Programming (IP), which is the vital approach employed in this 

paper. 

 

2.1 Review of Call Center Related Literatures 

 The proliferation of modern technology has changed the way most enterprises interact 

with customers. Nowadays call centers are used as a bridge to reach customers. Many 

companies have found that establishing call centers improves of company-customers 

relationship. This makes call centers an important part of any business. 

 In the last decade, call centers has been received with considerable enthusiasm by 

researchers. Numerous research studies that are either directly or indirectly related to call 

centers have been conducted for more than 50 years, and for a comprehensive and updated 

bibliography of studies Mandelbaum (2004) is an excellent source. For other introductions to 

the field, Gans et al. (2003) provide an overview of the telephone call centers and Gans and 

Zhou (2003) provide a comprehensive tutorial on call-centre operations. 

 The operations research community has contributed significantly to the call center 

research literature, and IP approaches for modeling certain aspects of call centers have been 

studied by various researchers. For example, Henderson and Berry (1976) apply heuristic 

methods and linear programming for telephone operator shift scheduling. Adel and Pearce 

(1979) and Bruce and Parson (1993) utilize queuing and IP techniques to determine optimal 

staffing levels for achieving a designated objective. Berman and Larson (1994) introduce the 

utilization of the JIT concept with a cost-driven objective to determine the optimal work 

force schedule. Thompson (1995) presents an IP for developing optimal shift schedules. 

Mason et al. (1998) develop an integrated approach using simulation, heuristic descent and 

IP techniques to determine near-optimal staffing levels. Gulati and Malcolm (2001) present a 

general IP of call scheduling model and use simulation to compare three different solving 
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approaches (i.e., heuristic, batch optimized, and dynamic optimized). Cezik et al. (2001) 

design a weekly tour scheduling using an application of IP model. Atlason et al. (2002) 

combine simulation with IP by introducing an iterative cutting-plane algorithm on an integer 

program, for minimizing the staffing costs of a multi-skill call center subject to satisfying 

service-level requirements that are estimated using simulation. 

As indicated above, IP formulations have been used extensively for work force 

management, but this is not the case for day-to-day operations in call centers, such as 

scheduling of inbound calls. However, numerous authors have considered routing of calls, 

primarily using queuing theory or similar analysis. For example, Melsa et al. (1990) present a 

neural network solution for call routing through a three stage interconnection network. Levy 

et al. (1994) propose a call-distributing algorithm that makes effectively use of available 

information to improve load balancing and SL in the centre. Borst (1995) studies a 

probabilistic call distribution to minimize a weighted sum of the mean waiting times. 

Durinovic and Levy (1997) present a routing solution for toll-free customer that was used at 

an AT&T call distribution centre. The algorithm used provides call-by-call routing to 

multiple customer sites based on periodic site-state updates and can address various objective 

goals. Kogan et al. (1997) study call center performance under two alternative call routing 

strategies, namely FCFS and Minimum-Expected-Delay (MED) and conclude that the 

performance of using FCFS is perceived as optimal. Marbach et al. (1998) formulate a 

dynamic programming problem and apply a reinforcement learning method and 

decomposition approach to find call admission control and routing policies. Gans and Zhou 

(2003) formulate a call-routing problem as a queuing system with SL constraint to determine 

the structure of effective routing policies. Finally, Koole et al. (2003) utilize heuristic and 

queuing approaches to analyze the performance of multi-skill call centers and also to 

determine optimal skill set for call center employees. 

Although we have seen that IP approaches have been widely used in many call center 

research studies, to the best of our knowledge, such an approach has not been used 

previously to schedule inbound calls. As previously noted, most research related to routing of 

calls uses a queuing perspective (e.g., Garnett and Mandelbaum, 2000; Gans and Zhou, 2003; 

Koole et al., 2003). A review of the use of queuing theory for analyzing call centers can be 
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found in Koole and Mandelbaum (2002). On the other hand, queuing analysis has certain 

limitation since it may often be difficult to perform (Pinedo et al., 2000), hence the IP 

approach developed in this paper may serve as an alternative is such situations. 

2.2 Overview of IP 

 The purpose of this section is to briefly summarize some basic IP concept and to 

describe some of the IP solution techniques, which will be applied in this research for 

inbound calls scheduling. Good introductions to this subject can be found in numerous 

textbooks such as Nemhauser and Wolsey (1988), Gottfried and Weisman (1973), and 

Bertsimas and Tsitsiklis (1997).  

2.2.1 Integer Programming Problems 

 Integer programming problems (IPs) are optimization problems in which some or all 

variables are required to be integers. The general form of IP model consists of (1) an 

objective function, either be maximizing or minimizing function (2) inequality and equality 

constraints, and (3) integrality constraints on some or all of the variables. Regarding the 

integrality restrictions, IPs can be categorized into two main types: (a) all-integer 

programming problems, in which all variables are integers, and (b) mixed-integer 

programming problems, in which only some of the variables are required to be integers.  

In this research study, we will concentrate on the all-integer programming problem with the 

special case where all variables are restricted to be either zero or one, namely 0-1 IP.  

{ }nBxxgxf ∈≤ ,0)(:)(min  (0-1 IP) 

 Here f is the objective function, g are the constraints, and B is the set of zero-one 

(binary) variables. 

 If the objective function and all constraints are linear, the problem is considered 

integer linear programming (ILP). Otherwise it is the integer nonlinear programming (INLP), 

which are considered to be one of the hardest to solve.  

The robustness of the 0-1 IP model makes it applicable to many applications, such as 

assignment and matching problems, scheduling problems, set-covering problems, set-packing 
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problems, set-partitioning problems, fixed-charge network flow problems, capacitated 

facility location problems, and traveling salesman problems.  

2.2.2 Model Formulation and Reformulation 

 As stated by Nemhauser and Wolsey (1988):  

“In integer programming, formulating a “good” model is of crucial importance to solving 

the model” 

While there are many possible ways to mathematically formulate the same problem, those 

formulations are not at the same level of difficulty to solve. The performance of solving a 

problem often depends on how the IP is formulated. In IP, bounds on the value of the 

objective function are often used to determined how “good” the IP formulations are since the 

efficiency of the formulation is very dependent on the sharpness of the bound (Nemhauser 

and Wolsey, 1988). Therefore, bounds are often used as a measurement to compare the 

quality of the formulation. Note that the IP formulation with the tighter bound is the better 

formulation. A bound (ZLP) can be obtained by solving the linear relaxation of the IP 

problem. For maximization problem, we compare upper bounds. The better bound or tighter 

bound refers to the smaller bond value.  While for minimization problem, we compare lower 

bounds and the better bound is the higher bound value. More information on linear relaxation 

technique is given in the next section.  

 

Example 2-1 

Consider, for example, the following IP problem: 

21 xxMax +  

s.t.  (Constraint 1) 1546 21 ≤+ xx

21, xx  are integer variables 

Let us explore the set of feasible points (S) of this example. 

S = {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1) (1,2), (2,0)} 
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One might easily see that  

723 21 ≤+ xx  (Constraint 2) 

also gives the same set of feasible points. 

However, which constraint yields the better formulation?  

 

0

1

2

3

4

0 1 2 3

x2 

x1 

Feasible integer solution 
Constraint 1 

Constraint 2 

A E     C 

Z =2 

D 

B 

 

Figure 2-1. Graphical representation of example 2-1 
 

 The graphical representation of example 2-1, show in figure 2-1, reveals the answer. 

Area ABC and ADE are the feasible regions of the problem with constraint 1, and constraint 

2, respectively. By replacing constraint 1 with constraint 2, we observe the smaller feasible 

region. Also, the upper bound with constraint 2 found at point D (Z2
LP =3.5) has the better 

value than that of from constraint 1 found at point B (Z1
LP =3.75). Hence, we say that 

constraint 2 makes the better formulation for this example.  

 To obtain a good formulation, besides the choice of constraints as illustrated in 

example 2-1, reformulation of IPs is another bound tightening technique which has gained a 

lot of attentions from researchers. Various automatic reformulation techniques have been 

studied and successfully implemented to improve formulation (Guignard and Spielberg, 
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1981; Williams, 1985; Andersen and Andersen, 1995; Brearley, Mitra and William, 1975; 

and Hoffman and Padberg, 1991).  

 Two common reformulation techniques used to improve model efficiency are:  

• Adding or removing variables, constraints, while keeping the same model structure. 

 

Example 2-2 

 Let revisit example 2-1, now not only replace constraint 1 with constraint 2, but let us 

also add a new constraint. 

32 ≤x  (Constraint 3) 

After adding the new constraint, we find that the new feasible region is smaller (area 

AFGE) and the upper bound of the new formulation found at point G becomes better (Z3
LP 

=3.33< Z2
LP< Z1

LP). See figure 2-2 for the graphical representation of example 2-2. 

 

Figure 2-2. Graphical representation of example 2-2 
 
 The approach used in example 2-2 is also known as cutting planes method, where one 

or more additional constraints (or cuts) are introduced to the original problem to cut off a 

superfluous portion of the previously feasible region (see shade area in figure 2-2). The 

0
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Constraint 1 

Constraint 2 
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Feasible integer solution F G Constraint 3 
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additional constraint is called a cutting plane. For more information on this method, see 

Geoffrion and Marsten (1972), Gomory (1958). 

 

Example 2-3 

Let us add another constraint to the formulation  

21 ≤x  (Constraint 4) 

 

Figure 2-3. Graphical representation of example 2-3 
 
 Resolving the LP relaxation, we found Z4

LP =3.33 at point G, which is equal to the 

bound value in the previous example (Z4
LP = Z3

LP =3.33< Z2
LP < Z1

LP). Although figure 2-3 

shows that the new constraint can trim down the feasible region (new feasible region is area 

AFGHI), the LP solution indicates the unnecessary of adding this new constraint since it does 

not improve the LP bound.  

 From this example, we learn that only valid inequalities that can tighter the LP 

bounds are significant and should be added as new constraints through the reformulation 

process.  Some well-accepted techniques to obtain general valid inequalities are integer 

rounding, disjunctive constraint, Boolean implication, geometric or combinatorial 

implications, C-G rounding, fractional cutting-plane algorithm, and Gomory’s fractional cuts 

0
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3

4x2 

Constraint 1 
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Feasible integer solution Constraint 3 F G 

Constraint 4 

H 

   I 

  



www.manaraa.com

12 

and rounding (Nemhauser and Wolsey, 1988). However, the valid inequalities obtained by these 

general techniques are sometimes not very powerful. The more potential techniques have been 

studies for special problem structure. See Farias and Nemhauser (2001) and Gottlieb and Rao 

(1990, 1986) for generalized assignment problem, Balas (1975a), Hammer, Johnson and Peled 

(1975), and Wolsey (1975) for knapsack problem, Grotschel and Padberg (1979) for  traveling 

salesman problem, Leung and Magnanti (1986) and Pochet (1988) for capacitated facility 

location, Cho et al. (1983a, 1983b) for uncapacitated facility location. More specific detail on 

each individual technique can be found in Nemhauser and Wolsey (1988).  

• Using a different model presentation. This method completely transforms the model by 

reformulate the problem with the new objective function, variables, and constraints.  

An example of the good formulation obtained by defining new set of variables can be 

illustrated using the following uncapacitated lot sizing (ULS) problem.  

 

Example 2-4 

Decide on a production plan for a single product over 4 weeks that will minimize cost 

while all demands are satisfied. Fixed cost is $300 per week. Unit variable cost of production 

is $50. Unit holding cost is $3. Demands are 200 units for week 1, 300 units for week 2, 100 

units for week 3, and 400 units for week 4. 

The problem can be formulated by letting di be the demand in week i, by defining xi, 

si as the amount produced in week i and stock at the end of week i and by defining a binary 

variable yi, indicating whether xi>0 or not. This lead to the following IP: 

∑
=

++
4

1
)350300(

i
iii sxyMin  

s.t. 

iiii xdxs +=+−1 for i = 1, 2, 3, 4 

ii yx 1000≤  

400,100,300,200,0 43210 ===== dddds   

}1,0{∈iy  

0,1 ≥ixs  
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Another possibility formulation is obtained by defining wit as the amount produced in 

week i to satisfy the demand in week j ≥ i, and by defining a binary variable yi as above 

formulation. This lead to the alternative IP: 

∑∑∑
= ==

−++
4

1

4

1

4

1
))(350(300

i
ij

ji
i wijyMin  

s.t. 

∑
=

=
4

1i
jij dw for j = 1, 2, 3, 4 

iiij ydw ≤  

400,100,300,200 4321 ==== dddd  

}1,0{∈iy  

0≥ijw  

Solving LP for both formulations, the first formulation yields Z1
LP=50300. The 

second formulation yields Z2
LP=51200. Therefore we conclude that the alternative 

formulation provides the tighter bound, hence is considered the superior formulation. Note 

that the global optimal solution for this example is found with the objective value (ZIP) of 

51200 under the lot for lot policy, where the production is planned each week to satisfy the 

demand of that week. 

Other well-known reformulation approaches are Bender’s reformulation and 

decomposition, column generation (also known as Dantzig-Wolf decomposition). See Bender 

(1962), Lemke and Spielbeg (1967), Magnanti and Wong (1981) for Benders’ algorithm, and 

see Banhart et al. (1998), Desrochers et al. (1989), Parker and Ryan (1994), Savelsbergh 

(1997) for column generation. 

2.2.3 Solution Techniques 

Many problems can be effectively formulated as IPs. However, solving IP (i.e. to 

produce an optimal solution or to show that it is either unbounded or infeasible) is sometimes 

a very difficult task, especially as the number of variables increases. Tremendous efforts 
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have therefore been put forward to develop effective IP solution techniques. Some well-

accepted techniques are primal algorithms, branch and bound, Lagrangian relaxation and 

duality, decomposition, cutting planes, and heuristic method.  

Nowadays, the IP solution process is usually done by employing IP software package. Most 

of the IP software package available today employ the LP based branch and bound algorithm 

at its core. Therefore, in the next section, it is very important to provide a discussion on this 

branch and bound technique.  

2.2.4 LP based Branch and Bound  

To find the best solution for an IP problem, one might in theory completely evaluate 

all feasible solutions in the solution space. However, this “naïve” approach is usually very 

time consuming and impractical for applying, especially with the large scale problems.   

First proposed by Land and Doig in 1960 for linear programming, Branch and Bound (BB) 

and its variants has become the most commonly-used algorithm for solving IPs. BB is an 

intelligent enumeration strategy, which allows us to completely explore the solution space 

without having to evaluate all feasible solution. The use of bounds for the objective function 

combined with the value of the current best solution enables the algorithm to search parts of 

the solution space only implicitly (Clausen, 1999). The method employed in BB to find 

bound values can be used to classify type of BB, for instance, linear programming (LP) based 

BB, Lagrangian relaxation based BB, column generation based BB, and Lagrangian duality 

based BB. Note that different technique employed can result in dissimilar quality of bounds. 

The idea behind BB is that we can partition the original problem, which might be difficult to 

solve, into the smaller subproblems, which are easier to solve, and solve them recursively. In 

general, BB consists of 3 key processes: subproblem selection, bounding, and branching. To 

find the optimal solution for the original IP problem, these processes might be repeating 

perform.  

As earlier mention, most today available IP solver employed LP based BB algorithm, 

in this section we will start our talk on this type of BB.  The general step of LP based B&B 

for a minimization problem can be outlined as follows:  

 

  



www.manaraa.com

15 

Step 1: Subproblem selection 

A subproblem is a problem derived from the original problem through addition of 

new constraints. Initially when we first start solving, there is only one original problem, 

which will be referred as root subproblem, to be selected to continue on step 2. However in 

later solving iteration, given a list of active subproblems, we will choose a subproblem to 

continue on step 2. There are a number of methods to decide which subproblem to continue. 

Some of the basic methods are left-to-right search, depth-first search, breadth-first search, 

and best-first search. Detail for each method can be found in Nemhauser and Wolsey (1988). 

 

Step 2: Bounding 

Bounds are used to determine if a subproblem is worth to continue exploring. To 

calculate a bound for any subproblem, we employ a relaxation technique. Solving a 

relaxation gives some idea on the best possible value of original problem (lower bound). For 

the minimization, the optimal objective value for relaxation is less than or equal to the 

optimal objective value for IP (ZLP ≤ ZLP). In LP based BB, linear relaxation is used to derive 

bounds on the new subproblem. Linear relaxation transforms the original IP into a Linear 

Programming (LP) by relaxing the integrality restrictions. The results will be one of the 

following: 

1) If the LP is infeasible, there is no solution for the subproblem.  

2) If all integrality restrictions are satisfied, then we are done and the subproblem is solved. 

The objective value obtain from solving relaxation of the subproblem is an upper bound 

for all branches stemming from this subproblem. 

3) If at least one of the integer variables is fractional in the LP solution, the solution 

obtained is a lower bound for the subproblem. 

For the first two cases, we say the subproblem is inactive. For the third case, if the 

lower bound value of the subproblem exceeds the last updated best upper bound, we again 

say the subproblem is inactive. If a subproblem is inactive, pruning that subproblem. 

Otherwise the subproblem is active and will be continued on step 3 branching. 
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Step 3: Branching 

To eliminate the fractional solution, new constraints are added to the subproblem. 

This process is called branching. We create new subproblems by branching on a fractional 

variable.  

We continue the solving process by repeating step 1, 2 and 3 until all subproblems are 

inactive. At each round (or iteration), the best upper bound for all braches found so far is 

updated. And at the end of the solving process, the optimal solution of the IP is given by the 

current best upper bound.  

To demonstrate the above BB steps, let us consider the very simple problem of: 

Minimize. It is also convenient to view BB steps in an enumeration tree.  

 

Example 2-5 

4321 982827 xxxxMin −−−−  

s.t.  

173457 4321 ≤+++ xxxx  

92846 4321 ≤+++ xxxx  

x1 x2 x3 and x4 are binary 

Let us start the solving process with the first iteration. 

 

Iteration 1 

Step 1: Subproblem (or node) selection 

Start with the LP relaxation of the original IP problem, referred as root subproblem 

(N0). See in figure 2-4 the enumeration tree of the first iteration, the first node represents the 

node N0. 

 

Step 2: Bounding 

Solve LP relaxation for the subproblem. Z0
LP = -50.5, X0= (0.5, 1, 0, 1). We also 

know that the solution for the original problem ZIP ≥ -50.5 
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Step 3: Branching 

We found that x1 was not integer in our previous solution. Therefore we branch on x1. 

To eliminate fractional solution, we create two new subproblems: subproblem 1 (N1) is 

derived by adding x1=0 to the root subproblem, subproblem 2 (N2) is derived by adding x1=1.  

 

Z0
LP = -50.5 

X0= (0.5, 1, 0, 1) 
ZIP ≥ -50.5 

N0 

 

N1 

x1=0 x1=1 

 

N2 

 

Figure 2-4. Graphical representation of example 2-5 Iteration 1 
 

Iteration 2 

Step 1: Subproblem selection 

At this step, either N1 or N2 can be selected based on the selection technique. Let use 

the composite of depth-first search (DFS) and left-to-right search for this and the remaining 

iterations. Select N1 to continue on step 2. 

 

Step 2: Bounding 

Solve LP relaxation for N1. Z1
LP = -40, X1= (0, 1, 0.375, 1). N1 is still active and need 

to continue branching. We also have new LB (tighter) for original IP where ZIP ≥ -40 
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Step 3: Branching 

x3 was not integer. We continue branching on x3. To eliminate fractional solution, we 

create two new subproblems: subproblem 3 (N3) is derived by adding x3=0 to N1, subproblem 

4 (N4) is derived by adding x3=1.  

 

Iteration 3 

Step 1: Subproblem selection 

We continue on a subproblem that is not inactive and again follow DFS and left to 

right search strategy. Select N3 to continue on step 2. 

 

Step 2: Bounding 

Solve LP relaxation for N3. Z3
LP = -37, X3= (0, 1, 0, 1). Since all integrality restrictions 

are satisfied, we are done and the subproblem is solved. N3 becomes inactive. The upper bound 

value (UB) for N3 and all braches stemming from N3 is -37. We also know that      -40≤ZIP≤-37. 

N3 is pruned and no branching is needed. The best UB found so far becomes -37.  

 

Iteration 4 

Step 1: Subproblem selection 

Select N4 to continue on step 2 

 

Step 2: Bounding 

Solve LP relaxation for N4. Z4
LP = -15, X4= (0, 0.25, 1, 0). We compare the lower 

bound of this subproblem, which is Z4
LP, to the last updated best UB, which is Z3

LP = -37. 

Since the lower bound exceed the last best updated UB, the subproblem is inactive and is 

pruned.  

The BB enumeration tree for iteration 1 to 4 is shown in figure 2-5. As you can see 

from figure 2-4 and figure 2-5, the tree grows by branching process and shrinks if any 

subproblems are pruned. Now we continue solving process on the fifth iteration.  
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Iteration 5 

Step 1: Subproblem selection 

 Select N2 to continue on step 2. 
 

Step 2: Bounding 

Solve LP relaxation for N2. Z2
LP = -48, X2= (1, 0.75, 0, 0). We compare the lower 

bound of this subproblem, which is Z2
LP, to the last updated best UB, which is Z3

LP = -37. 

Since the lower bound does not exceed the last best updated UB, the subproblem is not 

inactive and need to continue branching. 
 

Step 3: Branching 

x2 was not integer. We continue branching on x2. To eliminate fractional solution, we 

create two new subproblems: subproblem 5 (N5) is derived by adding x2=0 to N2, subproblem 

6 (N6) is derived by adding x2=1.  

Z0
LP = -50.5 

X0= (0.5, 1, 0, 1) 
ZIP ≥ -50.5 

N0 

 

Figure 2-5. Graphical representation of example 2-5 Iteration 5 

x3=0 

Z1
LP = -40 

X1= (0, 1, 0.375, 1) 
ZIP ≥ -40 

N1 

x1=0 x1=1 

N2 

 
 

x3=1 

N3 N4 

Z3
LP = -37 = UB 

X1= (0, 1, 0, 1) 
-40≤ZIP≤-37 

Z4
LP = -15 

X4= (0, 0.25, 1, 0) 
-40≤ZIP≤-37 



www.manaraa.com

20 

 
Iteration 6 

Step 1: Subproblem selection 

Select N5 to continue on step 2 

 

Step 2: Bounding 

Solve LP relaxation for N5. Z5
LP = -37, X5= (1, 0, 0.125, 1). Since all integrality 

restrictions are still not satisfied, we compare Z6
LP to the last updated best UB, which is Z3

LP = -

37. N5 is still active and need to continue on branching step since Z5
LP does not exceed -37. 

 

Step 3: Branching 

x3 was not integer. We continue branching on x3. To eliminate fractional solution, we 

create two new subproblems: subproblem 7 (N7) is derived by adding x3=0 to N5, subproblem 

8 (N8) is derived by adding x3=1.  

 

Iteration 7 

Step 1: Subproblem selection 

Select N7 to continue on step 2 

 

Step 2: Bounding 

Solve LP relaxation for N7. Z7
LP = -36, X7= (1, 0, 0, 1). Again all integrality 

restrictions are satisfied, we are done and the subproblem is solved. The upper bound value 

(UB) for N7 and all braches stemming from N7 is -36. However the UB of node N7 is not 

better than that of N3. The best UB found so far still remains -36.  Since N7 becomes inactive, 

the node is pruned.  

 

Iteration 8 

Step 1: Subproblem selection 

Select N8 to continue on step 2 
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Step 2: Bounding 

Solve LP relaxation for N8. The LP solution is infeasible; we conclude that IP for N8 

is also infeasible. N8 becomes inactive and is pruned.  

 

Iteration 9 

Step 1: Subproblem selection 

Select N6 to continue on step 2 

 

Step 2: Bounding 

Solve LP relaxation for N6. The LP solution is infeasible; we conclude that IP for N6 

is also infeasible. N6 becomes inactive and is pruned. There is no more active subproblem to 

continue branching. The LP based BB process is terminated. The optimal solution of the 

original IP is given by the current best upper bound, which is equal to Z3
LP = -37.  

The complete enumeration tree for example 2-5 is shown in figure 2-6. 
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x3=0 

Z0
LP = -50.5 

X0= (0.5, 1, 0, 1) 
ZIP ≥ -50.5 

N0 

Z1
LP = -40 

X1= (0, 1, 0.375, 1) 
ZIP ≥ -40 

N1 

x1=0 x1=1 

Z2
LP = -48 

X2= (1, 0.75, 0, 0) 
-40≤ZIP≤-37 

N2 

Z3
LP = -37 = UB 

X1= (0, 1, 0, 1) 
-40≤ZIP≤-37 

N3 

x3=1 

Z4
LP = -15 

X4= (0, 0.25, 1, 0) 
-40≤ZIP≤-37 

N4 

x3=0 

Z7
LP = -36 

X7= (1, 0, 0, 1) 
ZIP=-37 

N7 

x3=1 

INFEASIBLE 
 
 

N8 

x2=0 

Z5
LP = -37 

X5= (1, 0, 0.125, 1) 
ZIP=-37 

N5 

x2=1 

INFEASIBLE 
 
 

N6 

Figure 2-6. Graphical representation of example 2-5 Iteration 9 

2.2.5 Generation of LP based Branch and Bound  

 LP based BB is a very general approach. It is a standard way of dealing with IP. 

Despite of its easiness to solve, this method often seems to be inefficient since the bounds 

generated by linear relaxation are weak. Tremendous progress has been made over the years 

to improve LP bounds and make LP based BB more attractive. One direction of the 

improving is to develop composite procedures by combining LP based BB with the other 
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solution techniques such as cutting plane algorithm, the more efficient relaxation approaches, 

and the other bound tightening techniques. 

Integration between BB and cutting plane methods has been in great interest since it 

could potentially lead to a considerable reduction in number of iteration for solving an IP 

(see Mitchell, 2000; Nemhauser and Wolsey, 1988; and references therein for a good 

introduction). The key idea is to strengthen bond values by the additional of cutting planes at 

one or more subproblems along the BB process. If cut(s) is adding only at the root 

subproblem, the technique is called Cut and Branch (CB) technique, which is one of the 

reformulation technique explained in section 2.2.2. If cut(s) is adding at any other nodes (not 

the root node) after branching step, it is referred as Branch and Cut (BC).  

Branch and Cut (BC) is an exact approach for solving IP. It has been in great interest since 

the development of polyhedral theory and the introduction of strong problem specific cutting 

planes (Mitchell, 2002). While adding more cuts makes the subproblem becomes bigger and 

consequently takes longer time to solve, adding the “good” cuts can improve the formulation 

and tighten bounds, which in turn significantly improve the BB’s solving efficiency. The BC 

basic processes of each iteration include subproblem selection, bounding, branching, and 

adding cuts where needed. 

Here, we use the following two examples to explain the CB and BC methods. Let 

revisit example 2-5. Instead of solving by BB, we will use CB for example 2-6 and BC for 

example 2-7 to solve the problem. 

  



www.manaraa.com

24 

Example 2-6 

4321 982827 xxxxMin −−−−  

s.t.  

173457 4321 ≤+++ xxxx  (N0) 

92846 4321 ≤+++ xxxx  

x1 x2 x3 and x4 are binary 

To perform CB, we first reformulate the original IP by finding cuts to improve the 

formulation. As mentioned earlier, there are server methods to find cuts. However, in this 

example, a cover inequality for knapsack polytope is used. The detail on this method can be 

found in Nemhauser and Wolsey (1988). We obtain 121 ≤+ xx  (cut 1) from the second 

constraint as a good cut for the root subproblem (N0). After appending cut 1 into the original 

IP, we solve the LP of N′1. 

4321 982827 xxxxMin −−−−  

s.t.  

173457 4321 ≤+++ xxxx  (N′0)  N0 + cut 1 

92846 4321 ≤+++ xxxx  

x1 x2 x3 and x4 are binary 

121 ≤+ xx  

 

Iteration 1 

Step 1: Subproblem selection 

Select N′0 to continue on step 2 

 

Step 2: Bounding 

Solve LP relaxation for N′0. Z0′LP = -40, X0′= (0, 1, 0.375, 1). We also know that the 

solution for the original problem ZIP ≥ -40 
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Step 3: Branching 

We found that x3 was not integer in our previous solution. Therefore we branch on x3. 

To eliminate fractional solution, we create two new subproblems: subproblem 1 (N1) is 

derived by adding x3=0 to the root subproblem, subproblem 2 (N2) is derived by adding x3=1.  

 

Iteration 2 

Step 1: Subproblem selection 

Select N1 to continue on step 2 

 

Step 2: Bounding 

Solve LP relaxation for N1. Z1
LP = -37, X1= (0, 1, 0, 1). Since all integrality 

restrictions are satisfied, we are done and the subproblem is solved. N1 becomes inactive. The 

upper bound value (UB) for N1 and all braches stemming from N1 is -37. We also know that      

-40≤ZIP≤-37. N1 is pruned and no branching is needed. The best UB found so far becomes -

37.  

 

Iteration 3 

Step 1: Subproblem selection 

Backtracking on the path from N1   toward the root, we find N2 to continue on step 2 

Step 2: Bounding 

Solve LP relaxation for N2. Z2
LP = -15, X2= (0, 0.25, 1, 0). We compare the lower 

bound of this subproblem, which is Z2
LP, to the last updated best UB, which is Z1

LP = -37. We 

found that the lower bound exceed the last best updated UB, the subproblem is inactive and 

is pruned. There is also no need to update the best UB found so far. Since there is no more 

active subproblem to continue branching, the LP based CB process is terminated. The 

optimal solution of the original IP is given by the current best upper bound, which is equal to 

Z1
LP = -37. The CB enumeration tree for this example is shown in figure 2-7. Note that if we 

can find a strong cut to add to the root subproblem, we might be able to obtain the optimal 

solution from solving LP of the reformulate subproblem.  
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Z0′LP = -40 
X0′= (0, 1, 0.375, 1). 
ZIP ≥ -40 

N′0

x3=0 x3=1 

Z0
LP = -50.5 

X0= (0.5, 1, 0, 1) 
ZIP ≥ -50.5 

N0 

add cut 1  
x1+x2≤1 

Z2
LP = -15 

X0= (0, 0.25, 1, 0) 
ZIP = -37 

N2 

Z1
LP = -37 

X1= (0, 1, 0, 1) 
-40≤ZIP≤-37 

N1 

 

Figure 2-7. Graphical representation of example 2-6 Iteration 3 
 

Instead of using cover inequality method to find cut, let us use a fractional cutting-

plane algorithm (FCPA). The detail of FCPA can be found in Nemhauser and Wolsey (1988). 

We obtain  (cut 2) as a good cut for the root subproblem (N0). After 

appending cut 1 into the original IP, we solve the LP of N′0. 

1321 ≤++ xxx

4321 982827 xxxxMin −−−−  

s.t.  

173457 4321 ≤+++ xxxx       (N′0)  N0 + cut 2 

92846 4321 ≤+++ xxxx  

x1 x2 x3 and x4 are binary 

1321 ≤++ xxx  

Solving LP of N′0, we obtain the optimal solution Z0
LP = -37, X0= (0, 1, 0, 1). 
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Example 2-7 

We solve the IP problem in example 2-5 again with BC. 

For the sake of illustration, let us follow the same steps as in example 2-5 for iteration 1. 

• In iteration 1, we found Z0
LP = -50.5, X0= (0.5, 1, 0, 1). Therefore we created two new 

subproblems: N1 is derived by adding x1=0 to N0, and N2 is derived by adding x1=1 to N0. 

Let us now start employing the cutting plan method at iteration 1 after branching. 

 

Iteration 1 (continue) 

Step 4: Adding cuts (apply FCPA to find cuts) 

Before start adding cuts we solve LPs of N1 and N2 to indicate if cuts are needed. If 

the LP solution of a node is satisfied all integer restriction, we don’t need to add cut since the 

problem has been solved. Let us look back to our example 2.6, we found that Z1
LP = -40, X1= 

(0, 1, 0.375, 1) and Z2
LP = -48, X2= (1, 0.75, 0, 0). Therefore cuts can be added to both nodes 

to tighten bounds. We have 84443 4321 ≤+++ xxxx  (cut 1) as a good cut for subproblem N1 

and  (cut 2) as a good cut for subproblem N2. Note that cut 1 is a valid 

inequality for N1 and its associated children nodes and cut 2 is a valid inequality for N2, and 

its associated children nodes. But both cuts need not to be valid for N0. After append the cuts, 

we generate two new subproblems: N′1 and N′2. 

3423 321 ≤++ xxx

4321 982827 xxxxMin −−−−  

s.t.  

173457 4321 ≤+++ xxxx      (N′1)  N1 + cut 1 

92846 4321 ≤+++ xxxx  

01 =x  

84443 4321 ≤+++ xxxx  

x1 x2 x3 and x4 are binary 

and 

4321 982827 xxxxMin −−−−  

s.t.  
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173457 4321 ≤+++ xxxx      (N′2)  N2 + cut 2 

92846 4321 ≤+++ xxxx  

11 =x  

3423 321 ≤++ xxx  

x1 x2 x3 and x4 are binary 

Iteration 2 

Step 1: Subproblem selection 

Select N′1 to continue on step 2 

 

Step 2: Bounding 

Solve LP relaxation for N′1. Z1′LP = -37, X1′= (0, 1, 0, 1). Since all integrality 

restrictions are satisfied, we are done and the subproblem is solved. N′1 becomes inactive. 

The upper bound value (UB) for N′1 and all braches stemming from N′1 is -37. We also know 

that    -50.5≤ZIP≤-37. N′1 is pruned and no branching is needed. The best UB found so far 

becomes -37.  

 

Iteration 3 

Step 1: Subproblem selection 

Backtracking on the path from N′1   toward the root, we find N′2 to continue on step 2 

 

Step 2: Bounding 

Solve LP relaxation for N′2. Z2′LP = -36, X2′= (1, 0, 0, 1). Again here the subproblem 

is solved as x1, x2 and x3 are all integer. N′2 becomes inactive. There is no need to continue 

branching further. We compare the upper bound of this subproblem, which is Z2′LP, to the last 

updated best UB, which is Z1′LP = -37. We found that Z1′LP ≤ Z2′LP. Therefore we no need to 

update the best UB found so far. Since there is no more active subproblem to continue 

branching, the LP based BC process is terminated. The optimal solution of the original IP is 

given by the current best upper bound, which is equal to Z1′LP = -37. 
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Complete enumeration tree for example 2-7 is shown in figure 2-8.  

Z0
LP = -50.5 

X0= (0.5, 1, 0, 1) 
ZIP ≥ -50.5 

N0 

x1=0 x1=1 

Z1′LP = -37 = UB 
X1′= (0, 1, 0, 1) 
-40≤ZIP≤-37 

N′1 

add cut 2 
3423 321 ≤++ xxx  

add cut 1  
84443 4321 ≤+++ xxxx  

Z0
LP = -48 

X0= (0.5, 1, 0, 1) 
ZIP ≥ -40 

N4 

Z1
LP = -40 

X1= (0, 1, 0.375, 1) 
ZIP ≥ -40 

N1 

Z2′LP = -36 
X2′= (1, 0, 0, 1) 
ZIP =-37 

N′2

 

Figure 2-8. Graphical representation of example 2-7 Iteration 3 
 

As clearly illustrated by example 2-5, 2-6 and 2-7, with both CB and BC, we can 

bring down number of solving iteration. From the examples, we have shown that adding 

cutting plan can substantially reduce the size of BB enumeration tree and in turn result in the 

reduction of the overall computation time. 

By combining the more efficient relaxation approaches to the LP based BB, we 

expect either the strong bound value to be generated so that more nodes can be pruned or the 

easier to solve subproblem, which will consequently speeds up the LP based BB process. A 

relaxation, other than the LP relaxation, can be obtained 1) by dropping the complicating 

constraints of the original IP problem and adding them into the objective function with the 

penalty term if they are not satisfied 2) by adding and/or changing variables. The former 

method is known as Lagrangian relaxation (LR) method, and the later is known as 

combinatorial relaxation method. The review of the both relaxation methods can be found in 
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Nemhauser and Wolsey (1988). Example 2-8 bellow illustrates how the integration 

approaches between BB and the LR method can possibly improve the basic LP based BB.  

 

Example 2-8 

In this example LR technique is embedded into the basic LP based BB and used to 

solve the IP problem in example 2-5. Let follow the same steps as in example 2-5 for 

iteration 1 to 4. 

• In iteration 4, we found Z4
LP = -15, X4= (0, 0.25, 1, 0). The last updated best UB is Z3

LP = 

-37. 

Iteration 5  

Step 1: Subproblem selection 

Backtracking on the path from N4   toward the root, we find N2 to continue on step 2. 

 

Step 2: Bounding 

Let us now start employing the LR technique to subproblem N2. To demonstrate the 

concepts of apply LR to LP based BB, the constraint “ 173457 4321 ≤+++ xxxx ” is 

randomly selected to be relaxed since this example does not contain the complicating 

constraints. 

The Lagrangian relaxation of N2 with respect to 7x1+5x2+4x3+3x4≤17 is 

ZLR(λ) = )173457(982827)( 43214321 −++++−−−−= xxxxxxxxMinZLR λλ   

s.t.  

92846 4321 ≤+++ xxxx  (N′2)  LR of N2 

11 =x  

x1 x2 x3 and x4 are binary 

Solving the subproblem N′2 with λ=0, we obtain Z2′LR (λ=0) = -36, X2′ = (1, 0, 0, 1). 

Again all integrality restrictions are satisfied, we are done and the subproblem is solved. N′2 

becomes inactive and no branching is needed. The UB found from solving LR is -36, which 

exceeds the last best updated UB, the subproblem is inactive and is pruned. The BB process 
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is terminated. The optimal solution of the original IP is given by the current best upper 

bound, which is equal to Z4
LP = -37.  

The enumeration tree for example 2-8 is shown in figure 2-9. Although the LR 

method does not guarantee the optimal solution of the relaxed subproblem, finding a good 

LR solution might still improve the solving efficiency. Note that the reason for solving LR 

here is not necessarily to get the optimal solution but to obtain good lower bounds which can 

increase the possibility of pruning the nodes. However, a potential effective way to obtain the 

optimal solution is to integrate duality, in conjunction to the LR into the LP based BB. The 

method is knows as Lagrangian duality (LD).  

Another variation of LP based BB, which allows column generation to be applied 

throughout the BB enumeration tree, is called branch and price (BP). The key idea of BP is 

that we can easy the solving process of the LP relaxation, or subproblem, by leaving out 

some of the decision variables (also referred as columns), that in most case will equal to zero 

at the optimal solution anyway. To check the optimality of the subproblem, the pricing step is 

performed. The dual of the LP (also referred as pricing problem) is constructed and solved to 

identify if any decision variable should be added. If such variables are found, we add them 

into the LP and reoptimize the problem. If the optimal solution of the subproblem satisfied 

the integer restriction, we are done with the subproblem. Otherwise, continue with branching 

on a fractional variable. The general idea of BP is quite similar to that of BC. Except, in BP 

the cuts are added (also known as row generation) throughout the BB enumeration tree to 

tighten bound, while BC focuses on adding more decision variables (also known as column 

generation). BP is a good approach for problems that have many variables or columns to 

handle efficiently, but relatively few constraints such as assignment problem, routing 

problem and scheduling problem. An excellent introduction for BP can be found in Barnhart 

et al. (1998). 
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x3=0 

Z0
LP = -50.5 

X0= (0.5, 1, 0, 1) 
ZIP ≥ -50.5 

N0 

Z1
LP = -40 

X1= (0, 1, 0.375, 1) 
ZIP ≥ -40 

N1 

x1=0 x1=1 

 
 

N2 

Z3
LP = -37 = UB 

X1= (0, 1, 0, 1) 
-40≤ZIP≤-37 

N3 

x3=1 

Z4
LP = -15 

X4= (0, 0.25, 1, 0) 
-40≤ZIP≤-37 

N4 
Z2′LR(λ=0) = -36 
X2′= (1, 0, 0, 1) 
ZIP =-37 

N′2

LR with respect to  
173457 4321 ≤+++ xxxx  

 

Figure 2-9. Graphical representation of example 2-8 Iteration 5 
 

While integrating cutting plane algorithm and/or the more efficient relaxation 

approaches attempts to improve the lower bound for minimization, primal heuristics can be 

employed to obtain the tighter upper bound. The idea of applying primal heuristics to the LP 

based BB is using simple and quick heuristic either to obtain a good feasible solution for the 

IP or to find a good upper bound and use the solution to increase the nodes pruning 

possibility. The primal heuristics can be general methods (such as fixing some variable value 

and use optimization to find the value of the remaining variables, simple round up or down 

from the LP solution, greedy algorithm, and k-interchange heuristic) or problem specific 

methods (such as first come first served (FCFS) for job sequencing problem, short processing 

time (SPT) for production scheduling, Hungarian algorithm for assignment problem).  

Combining more than one technique to LP based BB can also be an alternative. The 

benefit will depend on how fast the problem can be solved and how good the solution is. 
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Generally, there always is the trade off between solution time and quality of the solution. 

However, regardless of which techniques are engaged, the tighter bound provided by the 

composite approaches might be of great help in decreasing the solution time of LP based BB. 
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CHAPTER 3. SCHEDULING INBOUND CALLS IN CALL CENTERS 

The characteristics of a basic inbound call center are described in Chapter 1. As 

previously mentioned, the method of matching calls with the proper CSRs is vital to 

providing efficient service, and hence becomes a focus of our research study. 

In this chapter, we first introduce three IP models as instruments to handle inbound 

calls scheduling task. We also examine the effectiveness of the models under various call 

centers environments through the numerical result. Finally, we present some conclusion that 

can be made based on these models.  

 

3.1 Model Development 

As noted in the previous in Chapter 2, inbound call scheduling has not been addressed 

previously as an optimization problem, and in this section we formulate this task as an IP 

problem. We start by describing the system and the modeling assumption. A call center has a 

known number of different classes of CSRs and a given number of different call types. At a 

particular point in time, there is a known number of different types of calls either being 

processed by the CSRs or waiting to be processed. Each class of CSRs has its own skill set, 

which means that the CSRs in that class are capable of handling a given type of calls at a 

specific service time. 

Each class of CSR has a corresponding queue of calls waiting to be processed, and 

when a call comes in it is assigned to one of those queues by an Automatic Call Distributor 

(ACD). The calls waiting in each queue can also be sequenced based on their characteristics 

and priority. The scheduling model addresses how at any point in time the ACD should make 

these assignment and sequencing decisions given the set of calls in the system. For 

simplicity, we assume that there are no lost calls at any time, and that when a call is taken by 

a CSR it will be served without pre-emption at a server-dependent serving time. Furthermore, 

a call will immediately leave the system after being served. 

Specifically, we assume that at a given time t, a finite set I of m(t) calls is waiting to 

be scheduled by ACD. Each call has its own waiting time wi(t) attached, which may depend 
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on the type of call as well as other factors. Calls are sequenced and distributed to one of 

parallel queues of a given set J of n(t) CSRs. Note that each call can be only processed once 

and only by one CSR, who may have an earliest time that he/she can take a next call, which 

we refer to as the remaining serving time rj(t). Thus, the CSR assignment and call sequencing 

can be though of jointly as assigning each call to one of m(t) × n(t) possible positions.  

The optimization model aims to identify the best call schedule, that is, the assigned 

CSR for each call, and position of the call in queue of that CSR. The decision variables for 

the optimization problem can thus be defined as follows: 

⎩
⎨
⎧ ∈∈∈

=
otherwise.0

,,,,positionqueueatCSRtoassignediscallif1
)(

QqJjIiqji
tX ijq

          

Most call centers appear to use a target customer service level as the primary 

performance measure. One of the common ways to do so is to guarantee a minimum service 

level, which is usually defined as some fixed Z percent of calls answered in Y seconds. 

Certain industry standards exist for these values, for example the popular 80/20 rule of Z = 

80, Y = 20 (Koole and Mandelbaum, 2002). Another desirable property is workload balance. 

If the focus is solely on the service level, it is possible for some CSRs to be idle or waiting 

for work while other CSRs are overworked. In such situations, call center managers may be 

interested in balancing work load while maintaining the service level. The primary 

motivation for this is the underlying assumption that when CSRs do not experience large 

fluctuations in call traffic they are likely to be more productive throughout the day. 

While guaranteeing certain service level is the most common performance measure 

used by call center managers, from an optimization perspective this may be better 

represented as a constraint than an objective function. We therefore consider two types of 

objective function that are believed to be related to achieving good service level, namely 

minimizing the flow time of the calls and balancing the load of the CSR. 

Specifically, we consider two flow time related objectives: minimizing the total flow 

time and minimizing the maximum flow time for any call. For balancing the load we choose 

to minimize the maximum deviation of assigned work load to guarantee that no single CSR is 

assigned unusually high workload. 
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The following variables will be convenient in formulating the optimization models. 

First, we define the queue position of call i served by CSR as 

∑
=

=
)(

1
),( )(),(

tm

q
qXtiJi tqXXtQ

i
,  (3.1) 

where Ji (t,X) is the CSR which is assigned at time t to serve call i, that is, 

∑∑
= =

=
)(

1

)(

1
)(),(

tm

q

tn

j
ijqi tjXXtJ .  (3.2) 

Now given the queue position, assignment, and the server dependent processing time 

Pij, queue length is the total processing time spent by a CSR to complete calls prior than call i 

in a queue and can be calculated at time t as follows: 
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Furthermore, the speed answer or the total time it takes to answer call i is then given by 
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The cumulative assigned work load of CSR j calculated at time t can be calculated as 

follows: 
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where  is the actual cumulative workload at time , and the actual cumulative 

work load of CSR j calculated at time t is 
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Finally, the number of calls that CSR j started the service after time t and before t1, sj(t,X) 

satisfies 

⎭
⎬
⎫

⎩
⎨
⎧

∈−≤+= +
−

= =
∑ ∑ ZXtstttXPtrXtsXts j

Xts

q

tm

i
ijqijjjj

j

),(,)()(:),(max),( 1

1),(

1

)(

1

tm )(

. (3.7)  

With this notation in hand, we can now formulate the first mathematical 

programming problem for assigning calls with the objective of minimizing the total flow 

time (TFT). 

Problem TFT 
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Subject to 
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Constraint (3.9) ensures that each call is served exactly once by exactly one CSR. Constraint 

(3.10) ensures that not more than one call can be served at a time by a CSR. 

Sometimes minimizing the total flow time might lead to an unbalanced solution 

where certain calls take very long to process. To address this, we also consider the alternative 

objective function of minimizing the maximum flow time (MFT), subject to the same 

constraints as before. 
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Problem MFT 
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Subject to constraints (3.9) to (3.10).  

Finally, as mentioned above, minimizing any flow time related objective may result 

in loss of balance between work assignments to different CSRs. Thus, we also consider the 

problem where the objective is to minimize the maximum deviation of cumulative assigned 

workload (MDCAW). 

Problem MDCAW 
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Subject to constraints (3.9) and (3.10). 

As earlier mentioned, many call centers promise a given customer service and it may 

therefore be appropriate to formulate a service level constraint as follows:  

Z
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This constraint can be used with any of the three IPs described above. Finally, for the 

flow time related objectives, a constraint may be added to manage the deviation of the 

cumulative assigned work load of any CSR. Similar to the service level Z in equation (3.13), 

this can be done by specifying a load balance factor L and adding the following constraint: 
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Note that the reoptimize process is required if there is any call coming or leaving the 

system. In the next section we explore the call center performance improvements that can be 

obtained through the use of these IP formulations. 

3.2 Numerical Example 

This section describes the experimental design we have conducted and also reports 

the results. To investigate the effectiveness of the developed optimization models, a realistic 

call system was simulated and investigated under various scenarios that correspond to 

different call center characteristics and management preferences. In addition to the three 

objective functions used by the optimization problems, that is, total flow time, maximum 

flow time, and maximum deviation of cumulative assigned workload, other performance 

measures relevant to a call center are evaluated. This includes the average number of calls in 

the system, average call flow time, average call waiting time, the CSR work load, and the 

service level of the call center. These various performance measures are analyzed and the 

performance used to determine which method for calls scheduling should be used in which 

circumstance. The details of the experimental design are described next. 

3.2.1 Experimental Design 

The call center used for this study is modeled based on an actual operational call 

center with the parameters modified to be achieve the experimental goals. In this model 

system, there are 43 CSRs working under 8 supervisors. Each CSR is scheduled to work 7.5 

hours per day excluding break and lunch time. Shifts are planned to meet the incoming call 

volumes. Only two or three CSRs will share the same schedule in order to spread the 

available work evenly throughout the center’s working hours from 8AM to 6PM. CSRs are 

skilled to work on multiple types of calls. Most CSRs are specialized in certain types of calls, 

and hence have faster service rates for those calls, while only minimally trained on others, 

and hence have slower service rates on those calls. Although this model call center can 

handle both inbound and outbound calls only inbound calls are treated in this study.  
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The experiment is designed to be realistic based on the model provided by the actual 

call center described above. The parameters that define the call center include the utilization 

rate of the CSRs, the types of calls that arrive, the CSR skill distribution, and the time 

horizon considered. Calls and CSR attributes’ information in the call center are tracked and 

recorded by the contact management system (CMS). The CMS allows going back and 

tracking daily reports by a 30-minute period for each individual CSR. Thus, all the 

experiments performed here were performed for 30-minute time intervals. This is indeed one 

of the most common time intervals using for summarizing call-by-call data (Koole and 

Mandelbaum, 2002), with other practical time intervals being 15-minute and 60-minute 

period (Gans et al., 2003).  

Generally the numbers of CSRs and the numbers of incoming calls for an inbound 

call center fluctuate widely during the day. The proposed models therefore allow the 

consideration of any numbers of CSRs and calls. However, given a relatively short time 

horizon, such as the 30-minute intervals considered in this experiment, the number of CSR 

can be assumed to be fixed. In the actual call center used as a model, two or three CSR share 

the same work schedule and would work the same 30-minute periods. Thus, in our 

experiments the number of CSRs in the call system was assumed to be three for all 

experiments while the number of incoming calls may vary based on the utilization rate of the 

call center. 

According to Feinberg (1990), the utilization rate of the agents is the major factor that 

affects the performance characteristics of ACD system. For instance, the major performance 

characteristics of the system are similar whether the simulation of the system with 400 new 

clients per hour (on average) and 20 agents or with 4000 new clients per hour (on average) 

and 200 agents. In a large best-practice call center, it is found that the utilization levels of the 

agents can average between 90 and 95 percent (Mandelbaum, 2003). Consistent with these 

observations and the actual utilization rates in our model call center, we vary the utilization 

rate of the call center in our experiments from low (85%), to intermediate (90%), and high 

(95%).  

Most call centers must process several types of calls and as noted earlier CSRs may 

be specialized to better handle certain types. For this experiment, we assume that there are 
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three types of calls, which we simply refer to as Type I, Type II, and Type III, with 

approximately one half of the call being Type I, approximately one third Type II, and 

approximately one sixth Type III. We can thus start with the desired utilization and calculate 

the arrival rate for each type so that the total arrival rate satisfies this utilization and the 

approximate proportions of each call type are preserved (see Table 3.1).  To generate the 

actual call arrivals from these rates, it is assumed that the time between call arrivals is 

exponentially distributed, which is a reasonable assumption for many call centers. 

Table 3.1: Arrival Rates for Each Type of Call 
 

Utilization Rate 
 85% 90% 95% 
Calls’ arrival rate: λ (calls/hr) 54 57 60 
Type I call’s arrival rate: λ1   (calls/hr) 28 29 31 
Type II call’s arrival rate: λ2  (calls/hr) 19 21 22 
Type III call’s arrival rate: λ3 (calls/hr) 7 7 8 

 
In most call centers, including the model call center used to design these experiments, 

at least some of the CSRs are specialized in certain types of calls but also at least minimally 

trained in other types of calls. In our experiment we consider this case but also the two 

extreme cases of no specialization and extreme specialization where there is no training for 

other calls. Thus, three cases are considered in the experiment: In Case I, each CSR is skilled 

to work with only one type of call, that is, each CSR is specialized with no training for other 

calls. In Case II, there are three identical CSRs that skilled to work with any types of call, 

that is, there is no specialization. In Case III, the three CSRs are skilled to work with any 

types of call but at the different service rate, that is, they are specialize in one type of call but 

also trained to handle the other two types.  The average service times for each of these three 

cases are summarized in Table 3.2. To generate the actual service time for each time it is 

assumed that service times are exponentially distributed, which is often a good 

approximation to the service time distribution (Feinberg, 1990). 
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Table 3.2: Service Time for Different CSRs for Each Type of Call 
Service Time Case Type of call CSR 1 CSR 2 CSR 3 
Case I Type I 147 - - 

Type II - 199 - 
Type III - - 175 

Case II Type I 147 147 147 
Type II 199 199 199 
Type III 175 175 175 

Case III Type I 167 80 233 
Type II 394 118 198 
Type III 198 122 54 

 
Given the parameter settings described above, the experiment considers using 

optimization with each of the three mathematical programming models (that is, TFT, MTF, 

and MDCAW) versus the simplest alternative of assigning calls on a first come first served 

(FCFS) basis to the first available CSR that is trained to handle the call. Other assignment 

rules could certainly be considered as well, but this comparison is intended to provide some 

insights into if an optimization approach should be considered and which formulation 

performs the best when it should be considered. In addition to the performance measures 

used by the optimization problems themselves, several other measures that are important in 

call center operations are evaluated. In particular, as noted earlier, customer service level is 

perhaps the most common measure used in call centers and should therefore be considered in 

any such study. Koole and Mandelbaum (2002) state that the industry standard for telephone 

services seems to be the 80/20 rule, under which at least 80% of the customers must wait no 

more than 20 seconds. It was noted earlier that this could be modeled as the constraint 

described in equation (3.14) above. 

However, in this experiment we found that this constraint leads to many of the 

optimization problems being infeasible. This may be partially due to the relatively small size 

of the problem (that is, only 3 CSRs), but this requires further investigation. To address this, 

we drop the constraint (3.14) of maintaining a service level of 80/20 and simply evaluate and 

report the service level obtained by solving the optimization problems. 

The variable parameters in the experiment are the scheduling procedure, utilization 

rate, and service time distribution. The scheduling procedure is one of TFT, MFT, MDWAC, 

or FCFS. The agent utilization is either 85%, 90%, or 95%, and there are three cases for 

serving time distribution that reflect different types of specialization for CSRs. There are 
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therefore a total of 36 possible settings. However, with Case I service time distribution where 

each CSR is able to only work with one type of call, the MDWAC procedure may be omitted 

because any calls’ assigning solutions will result in the same objective function value. This 

call center is therefore studied under 33 different scenarios. For 24 of those scenarios an IP 

must be solved each time a new call arrives or a call is completed by a CSR. All of these 

optimization problems are solved using a LINGO 9.0 commercial solver. 

3.2.2 Discussion of Results 

As noted above, the call center’s performance is observed for a total of 33 scenarios. 

The observed performance measures include the maximum number of calls (MaxN), the 

average number of calls in system (AvgN), the average flow time of a call (AvgF), the 

maximum flow time of a call (MaxF), the average waiting time for a call (AvgW), the 

maximum waiting time for a call (MaxW), the maximum deviation of assigned workload 

(Maxcldiv), and the call center service level (SL). The observed data are compared and 

analyzed to find the effect of using the various scheduling methods on the performances of 

the inbound call center under different call center characteristics (that is, different agent 

utilization rate and different serving time scheme as described above). 

The objective of these experiments is to determine under what conditions the 

assignment of incoming calls is sufficiently complex to warrant an optimization approach, 

and in those scenarios determine which of the three objective functions considered performs 

the best. 

In the case of each CSR being skilled to work with only one type of call there is no 

difference in the call center’s performances among the use of different assignment rules 

regardless of the level of agent utilization rate. This is a trivial observation since in this 

extreme case there is no flexibility for assigning calls so simply using a FCFS rule to assign 

calls is as good as any optimization approach. Thus, in the event that a call center is set up in 

this fashion there is no call for an optimization approach. 

The second extreme case is more interest but still relatively simple. Here all the CSRs have 

identical serving time and are skilled to work with any types of call. We might again expect a 

simple FCFS rule to perform well because with identical CSRs there is never a benefit to 
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holding a call for a CSR that is currently busy. However, our numerical results indicate that 

for a very important special case optimization does provide significant benefit. In particular, 

the numerical results reported in Table 3.3 indicate that if the goal is to maximize the service 

level then it is beneficial to assign calls by solving an optimization problem. This table shows 

the actual service level obtained by using FCFS or solving the TFT or MDCAW optimization 

problems, as well as the percentage improvement of the optimization approach over FCFS. 

Similar observation can be made about minimizing the average number of calls in system, 

where optimization with a flow time objective performed significantly better than FCFS for 

both low and intermediate utilization. We finally note from Table 3.4 that if the utilization is 

high and the goal is to either optimize the load balance between CSRs or the service level, 

then solving an optimization problem MDCAW has the best performance. Note that the table 

reports the service level (SL), the maximum deviation of assigned workload (Maxcldiv) and 

the percentage improvement of each optimization problem solution over FCFS. 

 

Table 3.3: Comparison of Service Level using Optimization (TFT or MDCAW) versus 
FCFS 

CSR 
Utilization FCFS  SL 

TFT MDCAW 
SL Change SL Change 

85% 31.3 40.6 30.0% 34.4 10.0% 
90% 9.1 15.2 66.7% 15.2 66.7% 
95% 10.3 15.4 49.9% 18.0 75.0% 

 

Table 3.4: Comparison of Assignment Policies for Case II Skill Distribution and  High 
Utilization 

 FCFS MDCAW TFT MFT 
SL 10.3 18.0 74.8% 15.4 49.5% 12.8 24.3% 
Maxcldiv 113.3 33.3 70.6% 77.3 31.8% 156.3 -38.0% 

 
 

We now turn our attention to the third case of CSR skill level distribution, where each 

CSR can work on any type of call, but at different service rate. This is the most complex and 

realistic scenario, and optimization can be expected to be more beneficial in this case. 

Indeed, our data indicates that FCFS is competitive only when the agent utilization is low. 

   



www.manaraa.com

 
 

45

An overview comparison of different scheduling methods is given in Table 3.5, where the 

performance as measured by each of the seven measures is identified as similar if they 

percentage difference is less than 3% (denoted with symbol ~), preferred if the percentage 

improvement is greater than 3% but less than 5% (denoted with symbol ⎬), and much 

preferred if the improvement is greater than 5% (denoted with symbol ⎬⎬).  The last column 

also identifies if an optimization approach is useful, and in those cases which type of 

objective function performs the best. 

For low utilization, the optimization does not yield significant benefits for any flow 

time related performance measure, number of calls in system, or service level objective 

functions. The only exception is when the manager wants to optimize the load balance 

between CSR. At any utilization level, such load balance is best achieved through solving 

problem MDCAW (see Table 3.6). Note that this is different than the case of identical CSRs, 

where solving MDCAW is only useful at high utilization. 

 

Table 3.5:  Comparison of Call Scheduling Methods for Case III Skill Distribution. 
Performance Utilization Preferences Among Scheduling Methods 

Optimization? 
Min AvgN 85 % FCFS ⎬⎬ MDCAW ⎬⎬ TFT ⎬⎬ MFT  No 

90 % TFT ⎬⎬ MDCAW ~ FCFS ~ MFT Flow objective 
95 % TFT ⎬⎬ MDCAW ⎬⎬ MFT ⎬⎬ FCFS Flow objective 

Min MaxF 85 % MDCAW ⎬⎬ FCFS ⎬⎬ MFT ⎬ TFT  Balance objective 
90 % MFT ⎬⎬ MDCAW ~ TFT ⎬⎬ FCFS  Flow objective 
95 % TFT ⎬ FCFS ~ MFT ⎬ MDCAW  Flow objective 

Min AvgF 85 % FCFS ⎬⎬ TFT ⎬⎬ MDCAW ⎬⎬ MFT  No 
90 % TFT ⎬⎬ MFT ⎬ MDCAW ⎬ FCFS  Flow objective 
95 % TFT ⎬⎬ MFT ⎬⎬ MDCAW ⎬⎬ FCFS  Flow objective 

Min MaxW 85 % FCFS ⎬⎬ MDCAW ⎬⎬ MFT ⎬⎬ TFT No 
90 % FCFS ⎬⎬ TFT ~ MFT ⎬⎬ MDCAW No 
95 % FCFS ⎬⎬ TFT ⎬⎬ MFT ⎬⎬ MDCAW  No 

Min AvgW 85 % TFT ⎬⎬ MDCAW ⎬⎬ MFT ⎬⎬ FCFS  Flow objective 
90 % TFT ~ MFT ⎬ MDCAW ⎬⎬ FCFS  Flow objective 
95 % TFT ⎬⎬ MFT ⎬⎬ MDCAW ⎬⎬ FCFS Flow objective 

Min Maxcldiv 85 % MDCAW ⎬⎬ FCFS ⎬⎬ TFT ⎬⎬ MFT  Balance objective 
90 % MDCAW ⎬⎬ FCFS ⎬⎬ MFT ⎬⎬ TFT  Balance objective 
95 % MDCAW ⎬⎬  MFT ⎬⎬ FCFS ⎬⎬ TFT  Balance objective 

Max SL 85 % FCFS ⎬⎬ MDCAW ⎬⎬ TFT ⎬⎬ MFT  No 
90 % MFT ~ TFT ~ MDCAW ⎬⎬ FCFS  Flow objective 
95 % MFT ⎬⎬ TFT ⎬⎬ MDCAW ⎬⎬ FCFS  Flow objective 
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Table 3.6: Comparison of CSR Work Balance for MDCAW versus FCFS 
CSR 

Utilization 
FCFS 

Maxcldiv 
MDCAW 

Maxcldiv Change 
85% 169.3 60.3 64.4% 
90% 103.3 88.3 14.5% 
95% 153.3 31.7 79.3% 

 

For other situations, that is, the utilization is intermediate or high and we are not 

primarily concerned with CSR load balance, solving the optimization problems with flow 

time objectives results in the best performance (See Table 3.7). Solving problem TFT usually 

results in better performance than MFT, that is, minimizing the total flow time at each point 

in time is preferable to minimizing the maximum flow time at each point in time. The only 

exceptions to this are when the agent utilization rate is intermediate and the objective 

function is to minimize the maximum flow time and the agent utilization rate is intermediate 

or high and the objective function is to maximize service level. The maximum flow time 

objective results in the best performance for those two scenarios (see Table 3.8). 

 

Table 3.7: Comparison of Assignment Policies for Case III Skill Level Distribution 
CSR 

Utilization 
Performance measure 

FCFS TFT MFT MDCAW 
90% SL 18.2 27.3 50.0% 27.3 50.0% 27.3 50.0% 

MaxN 6.0 4.0 33.3% 5.0 16.7% 5.0 16.7% 
AvgF 235.1 182.8 22.2% 216.1 8.1% 223.7 4.8% 
MaxF 578.0 466.0 19.4% 419.0 27.5% 464.0 19.7% 
AvgW 91.1 61.9 32.0% 61.9 32.0% 66.9 26.6% 

95% SL 12.8 25.6 100.0% 30.8 140.0% 17.9 40.0% 
MaxN 7.0 5.0 28.6% 6.0 14.3% 7.0 0.0% 
AvgF 356.7 269.9 24.3% 296.5 16.9% 337.9 5.3% 
MaxF 737.0 701.0 4.9% 759.0 -3.0% 788.0 -6.9% 
AvgW 188.4 129.0 31.6% 154.0 18.3% 164.9 12.5% 
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Table 3.8: Comparison of TFT versus MFT for Case III Skill Level Distribution 

Performance 
measure 

CSR Utilization 

85% 90% 95% 

TFT MFT TFT MFT TFT MFT 

SL 43.8 34.4 27.3 27.3 25.6 30.8 
MaxN 4.0 4.0 4.0 5.0 5.0 6.0 
AvgN 0.6 0.8 0.9 1.0 2.0 2.5 
MaxF 578.0 561.0 466.0 419.0 701.0 759.0 
SumF 6207.0 7114.0 6034.0 7130.0 10527.0 11563.0 
AvgF 194.0 222.3 182.8 216.1 269.9 296.5 
AvgW 50.1 75.2 61.9 61.9 129.0 154.0 

 

We conclude this section with some general managerial insights that are indicated by 

our numerical results. First, optimization appears to be most valuable when CSRs are 

specialized but also trained for calls that are not within their specialization. This is likely to 

be the situation for most call centers. Second, optimization appears to be more valuable at 

higher utilization rates, such as the 90%-95% rates that are commonly observed for call 

centers. Third, solving the MDCAW problem performs well under almost any scenario when 

the objective is to balance load between CSRs and it generally provides a good service level. 

Fourth, minimizing the total flow time is most often preferable to minimizing the maximum 

flow time. Indeed, minimizing the maximum flow time locally, that is, each time a call 

arrives or departs, often leads to higher overall maximum flow time than minimizing the total 

flow time locally. Thus, the optimization approach proposed here can improve call center 

performance under realistic scenarios, and both the TFT and MDCAW problems are useful, 

depending on what performance measures are most important to call center management. 

3.3 Model Conclusion 

Call centers are employed by numerous businesses to conduct many of their customer 

interactions. A key operation in such call centers is scheduling of inbound calls, which 

involves both assigning calls to CSRs and sequencing the calls waiting for each CSR. 

In this chapter, we show that the performance of certain call centers, as measured by 

service levels, call flow times, and CSR load balance, can be significantly improved by 

employing an optimization approach for such inbound call scheduling.   
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The findings reported indicate that optimization is most valuable under realistic 

scenarios involving specialized but broadly trained CSRs and high call center utilization 

rates. In particular, solving the MDCAW problem performs well under almost any scenario 

when the objective is to balance load between CSRs and it generally provides a good service 

level. Minimizing the total flow time also results in good performance on most performance 

measures, including flow time related measures and service level; and is the best scheduling 

method with respect to most performance measures when the utilization is high and CSRs are 

specialized but broadly trained. 

However, the solution approach, we have employed, that is solving each optimization 

problem independently using a commercial solver, is not fast enough to be used in a real-time 

ACD system. In the next chapter we will focus on how to improve the solution algorithms. 

Several directions will be considered for obtaining an optimal or near-optimal schedule under 

the tight time constraints that are inevitable when using this approach in real time.  
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CHAPTER 4. SOLUTION TECHNIQUES 

In Chapter 3 our findings have shown that the performance of the call centers can be 

significantly improved by employing an optimization approach to schedule inbound calls. 

The solution approach used tends to be impracticable under a tight time constraint, as is the 

case in a real time ACD system. Various approaches can be taken to overcome this problem; 

however, there is no one size fits all solution technique that is effective for every problem. 

We need to design a combination of techniques that are suitable for the inbound call 

scheduling problem. Our aim is “effective” solution techniques which are suitable for 

inbound call scheduling problems. Frequently, when deciding on a solution technique, we 

experience a tradeoff between quality of the solutions and its speed. In this research study, 

we describe an “effective” solution technique as a technique that allows our IPs to generate 

the same or better quality solution than that obtained from FCFS within a reasonable solution 

time that allows for real time scheduling of calls. This makes the optimization a competitive 

approach for scheduling inbound calls. 

In Chapter 2, several ideas such as reformulation and combining general LP based BB 

method with some bound tightening methods to speed up the solution process have already 

been introduced. In this research, four promising IP solution techniques are investigated: 1) 

IP Reformulation, 2) Lagrangian Relaxation and Duality, 3) Cutting Plane Algorithm, and 

finally 4) Solving IP with Initial Solution (herein referred to as Re-optimization Approach) 

4.1 Proposed Solution Techniques 

4.1.1 IP Reformulation 
One of the most common causes of a large runtime is the size of the formulation. As 

an effort to reduce number of decision variables, the original IP models were reformulated by 

using different decision variables. By breaking our call scheduling problem into two separate 

simpler structured components, that is, the assignment problem and the sequencing problem 

and introducing new decision variables, number of decision variables is changed from m2n to 

m(m+n), where m and n are the number of calls and number of CSRs, respectively. For the 

reformulated IP, we introduce new decision variables as follows: 
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It is clear that for any values of m and n, except when m or n is equal to 1, which is 

very unlikely to be the case of any call centers, the number of decision variables of the new 

formulation will be less than or equal to the original IPs.  The difference in the size of the 

formulation increases exponentially, when the call center becomes bigger. This makes the 

reformulated IP a viable alternative. 

Now given the queue position, assignment, and the processing time, the following 

supporting variables and the CSR service time condition can be derived and will be utilized 

in the new optimization models.  
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Where  
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With the above notation, we can now reformulate the mathematical programming problems 

for scheduling inbound calls in call centers as follow: 

 

Reformulated Problem TFT (RTFT) 
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Constraint (4.9) ensures that each call is served exactly once by exactly one CSR. Constraint 

(4.10) ensures that not more than one call can be served at a time by a CSR.  

 

Reformulated Problem MFT (RMFT) 
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This is subject to constraints (4.9) to (4.10).  

 

Reformulated Problem MDCAW (RMDCAW) 
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This is subject to constraints (4.9) to (4.10).  

It is wise to note that introducing new decision variables does not affect the 

mathematical equation of the service level constraint and of the load balance constraint, thus 

both constraints remain unchanged. The above formulations can be improved by using 

   



www.manaraa.com

 52

separate constraints to tighten the feasible region, that is, we replace constraint (4.9) with the 

stronger valid equalities (4.13) and (4.14).  
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4.1.2 Lagrangian Relaxation and Duality 
Lagrangian relaxation and duality is a well-accepted optimization technique that 

researchers use to obtain boundaries for optimization problems. There is motivation for 

applying stronger lower bound values than those achieved by the continuous relaxation (CR) 

approach. Adding of the lower bound to the formulated IP will tighten the problem and 

results in a smaller polytope, which in turn often helps speed up the solution process. We 

expect not only the decreasing the solution time, but also improved solution quality. 

Considering problem TFT 
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Among the two type of constraints in the above IP formulation, that are assignment 

constraints and sequencing constraints, we decide to drop the sequencing constraints 

 and include them in the objective function with the Lagrangian qjtX
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multipliers. The relaxation obtained is regarded as an assignment problem which is a 

relatively easy problem to solve. Then, we derive the Lagrangian dual.  

Lagrangian Dual of Problem TFT (LDTFT) 
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Where λ is the vector of Lagrangian multipliers. 

With the same procedure, we can derive 

Lagrangian Dual of Problem MFT (LDMFT) 
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Subject to constraints (4.16).  

Lagrangian Dual of Problem MDCAW (LDMDCAW) 
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Subject to constraints (4.16).  

Due to their simplicity, sub-gradient algorithms are often used as a tool to obtain 

solutions of Lagrangian dual problems. In this research study, we will use the sub-gradient 

algorithm method to solve LDTFT, LDMFT and LDMDCAW problem. Note that to make 

thing simple, the following specifications are made in our research study: 

1) Initial Lagrangian Multiplier U0 is set to 0. 
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2) A simple square summation but not summable step rule αk = 1/k is used, where k is the 

iteration number. Although the convergence is slow, the algorithm is guaranteed to converge 

to the optimal Solution.  

3) Several criteria can be used to terminate sub-gradient algorithm iterations. For example, 

the iteration should be terminated if the optimal solution is found or if the objective value is 

not improved within a number of iterations, or if the maximum solution time is reached. For 

our inbound call scheduling problem, setting the maximum solution time would be a practical 

and reasonable stopping point when the optimal solution for the optimization problem is not 

found. Therefore the maximum solution time for termination sub-gradient algorithm is when 

there is new call coming in to system and triggering the new optimization.  

4.1.3 Cutting Plane Algorithm 

The idea of adding valid inequalities as cut constraints to IP has been used to solve a 

great number of problems that have vast solution spaces. Although adding more constraints 

might increase the complexity to the formulation, it can significantly reduce the size of 

solution space.  

As previously mentioned, our call scheduling problem is the mixture of sequencing 

problems and assignment problems.  Any valid inequalities of assignment problem and 

sequencing problem will therefore also be valid for the calls scheduling problem.  

In Farias and Nemhauser (2001), a family of valid inequalities for the generalized assignment 

polytope is introduced. Specifically, they introduce the following multiple-choice GAP 

(MGAP) constraint:  

“at most one of xi1,…, xin,  is positive for ∀i∈M.” 

As mentioned by Farias and Nemhauser (2001), although the MGAP constraints in 

general are not facet-defining, they define facets of a polytope of a continuous relaxation 

(CR) of generalized assignment problem.  The demonstration through computational 

experimentation revealed that MGAP constraints are effective cuts for solving generalized 

assignment problem when incorporated into a branch and cut scheme.  
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By slightly modifying the MGAP constraint to match with our models, we obtain at most one 

of Xijq is positive for ∀i∈M. 
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If we append the above valid inequalities as cut constraints (4.19) for problem TFT, 

problem MFT, and problem MDCAW, we obtain problem CTFT, CMFT, and CMDCAW, 

respectively. With the new formulations, we expect the solution time to be decreased since 

the cuts together with the sequencing constraints will cut off infeasible fractional solutions 

when performing branch and cut. 

4.1.4 Re-optimization 

As previously mentioned, to scheduling inbound calls in the call centers with the 

proposed optimization approach, an IP must be solved each time a call arrives or is 

completed by a CSR. Therefore the re-optimization process will be repeatedly performed 

during the day.  

To make use of the available information, that is the previous optimal scheduling 

solution, both in terms of quality of the solution and the computational efficiency, is to use 

the previous optimal solution as a basis and re-optimize for new scheduling solutions. 

Our idea is that by fixing the new schedule of all the calls that have been in the call center 

and have not been served by CSRs with their associated previous schedule from optimization 

and using FCFS approach to schedule the new calls (if there is any). This way, we can obtain 

the fast and feasible scheduling solutions which later will be referred to as the heuristic 

feasible scheduling solutions. We then compare the obtained solutions with FCFS. The better 

scheduling solutions are used as the initial feasible scheduling solutions of the branch and 

bound procedure to produce the new optimal schedule. Inputting a good initial feasible 

solution to the problem is a boost to computation since it increases pruning potential. 

Although the optimal scheduling is not guaranteed, incorporating heuristic procedures into 

optimization algorithms would still be an effective approach to obtain the fast and reasonable 

scheduling solutions. 
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The proposed composite procedure can be outlined as follows:  

Initialization: Given the scheduling solutions from the previous optimization (
1

X ). 

 

Step 1: Obtain the heuristic feasible scheduling solutions (
'1

X ) by fixing the initial values of 

the calls that have been in the call center and have not been served by CSRs to their associate 

scheduling solutions from
1

X . For new calls (if there are any) using FCFS approach to obtain 

their initial values. This step is referred as the HEU method.  

 

Step 2: Compare call center performances offered by 
'1

X  with those offered by FCFS 

scheduling solutions (
FCFS

X ), choose the scheduling solutions which can provide the better 

performance as the initial feasible scheduling solutions (
*1

X ). 

 

Step 3: With
*1

X , use optimization to obtain new scheduling solutions (
2

X ) using the 

formulated IPs.  

If the IP employed in step 3 is TFT, in this research, we will refer to the new method 

as ROTFT. In the same fashion, we derive ROMFT, and ROMDCAW.   

The proposed re-optimization approach is very simple, practical to implement, and guarantee 

to be as good or better solutions than those from FCFS. To apply these approaches to 

schedule inbound calls under tight time constraint, we might add a condition such as if the 

optimal solutions could not be found within t seconds or i iterations, use the best feasible 

solution found so far. Although 
*1

X is a very fast and feasible schedule to obtain, to schedule 

calls with
*1

X , the examination of the solution quality is necessary. The above procedure is 

depicted in figure 4.1 

4.2 Numerical Example 

In the preceding section, we proposed 4 solution techniques for our inbound calls 

scheduling problem. In order to investigate the efficacy of the proposed solution techniques, 

two phases of the experiments were designed and constructed. The first phase is the 
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preliminary experiment which aims to determine the potential of the solution techniques. The 

preliminary experiment and its result are described in more detail in appendix B. The 

preliminary result indicated that Lagrangian Relaxation and Duality, Cutting Plane 

Algorithm, and Re-optimization approach are good approaches to handling the inbound call 

scheduling problem. 

 

                                      HEU method 
 
 
 

 
 

 
 

Figure 4-1. Re-Optimization Approach  
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The second phase (the actual experiment) was set up to examine the effect of using 

the various proposed solution techniques. As recommended from the preliminary result, we 

chose to concentrate our study on Lagrangian Relaxation and Duality, Cutting Plane 

Algorithm, and Re-optimization approach. In addition to these promising solution 

techniques, we are also interested in exploring the quality of heuristic feasible scheduling 

solutions. Hence, let us include HEU method, the logic of obtaining heuristic feasible 

scheduling solutions, as another solution technique in our focus.  

The objective values of the original IPs consisting of: the total flow time (SumF), the 

maximum flow time (MaxF), and the maximum deviation of assigned workload (Maxcldiv) 

along with the associated solution times were recorded, compared and analyzed to identify 

the effective scheduling methods.  

In this section, we explain the experimental design, the data generation, and the 

discussion of result of the second phase experiment.  

4.2.1 Experiment Design  

30 different realistic call center’s parameter settings were simulated to represent 

various call centers characteristic, various calls and CSRs attributes at various time periods 

during the day. Those call center’ parameter settings include the time horizon considered t- 

t1, number of calls m(t), call type and its waiting time wi(t), number of CSRs n(t), initial 

actual cumulative workload Aclj(t0) and remaining serving time rj(t) of each CSR, and the 

server dependent processing time Pij.. 

Given the parameter settings described above, the experiment compares the call 

center’s performances and the solution time among the different scheduling methods. The 

scheduling method is one of the original three mathematical programming models (that is, 

TFT, MTF, and MDCAW), the logic of obtaining heuristic feasible scheduling solutions (that 

is, HEU), and the new purposed solution techniques (that is, LDTFT, LDMFT, LDMDCAW, 

CTFT, CMFT, CMDCAW, ROTFT, ROMFT, and ROMDCAW), and FCFS. There are 

therefore a total of 390 possible scenarios. All of these optimization problems are solved on 

an INSPIRON B120 with a LINGO 10.0 commercial solver. 
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4.2.2 Data Generation 
The call centers’ setting in this section is similar to the model call center used in 

section 3.2 with these differences:  

 

1) Utilization rate 

We have learnt from our numerical example in chapter 3 that optimization approach 

appears to be more valuable at higher utilization rates. Therefore instead of varying the call 

centers’ utilization rate of the call center from low (85%), to intermediate (90%), and high 

(95%), we randomly generate the value of the utilization rates to be in the range of 90% to 

100%.   

 

2) Server dependent processing time Pij 

We assume CSRs are skilled to work with any types of call but at the different service 

rate. Using the processing time information from an actual operational call center where the 

minimum processing time is 4 seconds and the maximum processing time is 879 seconds, we 

arbitrarily generate the average processing time for each type of call between the minimum 

and the maximum. We then deviate from the average processing time to get the server 

dependent processing times for each type of call by randomly generating data from 

Exponential Distribution.  

 

3) Number of CSR n(t), 

Instead of fixing the number of CSRs to 3, for this experiment we randomly generate 

30 integer numbers between 4 and 9 to represent the numbers of CSRs in 30 call centers’ 

settings. 

With the parameters mentioned above, we calculate the call arrival rates that satisfy 

the randomly generated utilizations. Like the call center described in section 3.2, we continue 

to assume that the time between call arrivals is exponentially distributed and there are three 

types of calls referred as Type I, Type II, and Type III. The call inter-arrival times are 

generated based on the calculated arrival rates, while the types of calls are randomly selected 

among the three types of calls. 
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4) Time horizon considered t- t1 

As explained in section 4.1.4, the Re-optimization approach requires an initial 

feasible scheduling solution to start an optimization. Therefore we specify a 30-minute pilot 

run of each experiment setting. At the beginning of the pilot run tnitial, there are calls being 

serviced by CSRs with the associated remaining serving time rj(tinitial). We assume that 

during this 30-minute period, Re-optimization approach is used to schedule calls in the 

system. The re-optimization of call scheduling is triggered each time there is a new call 

arrived into the call center system. For each optimization, the scheduling solution, solving 

time, and number of iterations are solved and recorded. Call center’s parameter settings for 

the subsequent optimization are also derived.  

As for each CSR’s initial actual cumulative workload Aclj(tinitial), we take into account 

only the call that the CSR is serving at the beginning of the pilot run.  Therefore the initial 

actual cumulative workload is equal to the processing time of the initial serving call. Since 

the highest number of call represents the busiest time of CSRs, we rationally select the time 

horizon considered t- t1 for our second phase experiment to be when the highest number of 

call m(t) in the system happens. In the case of having more than one maximum, we simply 

chose the latest time period. This process yields not only the initial feasible scheduling 

solution but also the required parameters for all 30 different realistic call center settings.  

Two simple data generation functions: 1) RANDBETWEEN ( ) in Microsoft Excel and 2) 

rexp ( ) in R were used to generate data sets. Table 4.1 summarizes the detail of how the data 

sets are generated.  
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Table 4.1: Data Generating Function 

Parameter Data Generating Function Unit 

Utilization rate RANDBETWEEN (90,100) % 

Average processing time RANDBETWEEN (4,879) Seconds 

Number of CSRs RANDBETWEEN (4,9) CSRs 

Inter-arrival time rexp(n,lamda) Seconds 

Server dependent processing time rexp(n,1/mean) Seconds 

Remaining serving time RANDBETWEEN (4,9) Seconds 

Note: n is the number of observations, lamda is the desired call arrival rate,  
          mean is the average processing time. 

 

With the above numerical data generation description, the relevant data sets used for 

all 30 experiment cases are provided in appendix C. Next, we will give the discussion of 

results. 

4.2.3 Discussion of Results 

To begin, we briefly review our aim of this research chapter. In this chapter, we 

intend to identify whether the solution techniques purposed are effective and suitable for 

inbound calls scheduling problem. An “effective” solution technique, as we define, is a 

technique that allows our IPs to generate the same or better quality solution than that 

obtained from FCFS within a reasonable solution time that allows for real time scheduling of 

calls. Therefore, two main aspects we verified for each solution technique are: 1) whether the 

quality solution obtained is better than that obtained from FCFS; and 2) whether the good 

feasible solution can be found within a reasonable solution time. Besides the verification of 

effectiveness of individual solution technique compared to FCFS, comparisons of quality 

solutions and solution times among different solution techniques are also included. 

Regarding solution time, we recorded the time when the optimal scheduling solutions 

are found. In the case that optimal scheduling solutions are not found, we recorded the time 

horizon considered for particular optimization round. However for Lagrangian Relaxation 

and Duality, the approach of collecting solution time data is slightly different: two solution 

times are recorded. The first solution time is the total time until sub-optimal scheduling 
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solutions are obtained. The second solution time is the best iteration time of obtaining sub-

optimal scheduling solutions. 

 In determining whether solution techniques perform significantly different than each 

other, on average, we conducted the one-tailed paired t-test along with the descriptive 

statistics. The Central Limit Theorem (CLT) permits use of t-test when the population is 

abnormal. Typically sample size of 30 is used as a rough guideline to claim that the CLT 

makes the t-test viable.  

From the experiment, we found that Lagrangian Relaxation and Duality sometimes 

did not offer feasible scheduling solutions. In this case, the number of data points obtained 

would not be enough to apply CLT; hence the normality of data is needed to be assumed. We 

then provide the frequencies of occurrences as a supplement to capture how well under tight 

time the solution techniques can provide good feasible solutions.  

With the above clarification and the statistical data analysis methods mentioned; 

findings are presented in 2 main sections: 1) descriptive statistics; and 2) one-tailed paired t-

test statistics. 

 

Descriptive Statistics 

Tables 4.2, table 4.3 and table 4.4 summarize descriptive statistics of our findings 

when the objective is to minimize the total flow time, minimize the maximum of flow time, 

and minimize the maximum deviation of cumulative assigned workload, respectively.  
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Table 4.2: TFT – Descriptive Statistics 
Unit: seconds FCFS HEU TFT CTFT LDTFT 

best time 
LDTFT  

total time 
ROTFT 

Average SumF  3737.5 2187.8 1793.5 1725.8 1623.2 1623.2 1563.6 
Average MaxF 2219.3 1170.2 881.6 819.1 905.5 905.5 722.3 
Average MaxclDiv 1980.0 1493.4 1246.2 1335.5 1384.8 1384.8 1357.4 
Average solution time 0.0 0.0 33.9 2.2 33.6 73.6 33.0 
Average % change of SumF 
with respect to FCFS Base value 25% 27% 39% 34% 34% 47% 

Frequencies of the occurrence: times (%) 
Feasible solutions found 30 (100%) 30 (100%) 30 (100%) 30 (100%) 23 (77%) 23 (77%) 30 (100%) 
No feasible solution found 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (23%) 7 (23%) 0 (0%) 
Generate better objective 
value than FCFS 0 (0%) 24 (80%) 25 (83%) 25 (83%) 20 (87%) 20 (87%) 27 (90%) 

Generate worst objective 
value than FCFS 0 (0%) 4 (13%) 4 (13%) 4 (13%) 2 (9%) 2 (9%) 0 (0%) 

Generate better objective 
value than FCFS with same 
solution time 

0 (0%) 24 (80%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Generate the best objective 
value 3 (10%) 6 (20%) 8 (27%) 12 (40%) 11 (48%) 11 (485) 26 (87%) 

 
 

Table 4.3: MFT – Descriptive Statistics 
Unit: seconds FCFS HEU MFT CMFT LDMFT 

best time 
LDMFT 
total time 

ROMFT 

Average SumF  3549.7 2023.4 1737.4 1695.2 1575.2 1609.3 1569.1 
Average MaxF 2061.2 1122.7 893.6 867.6 733.8 733.8 750.0 
Average MaxclDiv 1966.6 1456.1 1410.5 1414.2 1438.4 1430.0 1409.3 
Average solution time 0.0 0.0 33.9 2.6 29.2 59.0 26.4 
Average % change of MaxF 
with respect to FCFS Base value 23% 35% 43% 52% 52% 50% 

Frequencies of the occurrence: times (%)  
Feasible solutions found 30 (100%) 30 (100%) 30 (100%) 30 (100%) 25 (83%) 25 (83%) 30 (100%) 
No feasible solution found 0 (0%) 0 (0%) 0 (0%) 0 (0%) 5 (17%) 5 (17%) 0 (0%) 
Generate better objective 
value than FCFS 0 (0%) 24 (80%) 25 (83%) 24 (80%) 22 (88%) 22 (88%) 26 (87%) 

Generate worst objective 
value than FCFS 0 (0%) 6 (20%) 3 (10%) 4 (13%) 0 (0%) 0 (0%) 0 (0%) 

Generate better objective 
value than FCFS with same 
solution time 

0 (0%) 24 (80%) 0 (0%) 0 (0%) 0 (0%) 22 (88%) 26 (87%) 

Generate the best objective 
value 3 (10%) 12 (40%) 14 (47%) 6 (20%) 17 (68%) 17 (68%) 23 (77%) 
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Table 4.4: MDCAW – Descriptive Statistics 
Unit: seconds FCFS HEU MDCAW CMDCAW LDMDCAW 

best time 
LDMDCAW 
total time 

RO 
MDCAW 

Average SumF  6330.6 5586.9 6876.6 5045.2 2920.8 2958.5 5371.5 
Average MaxF 2639.9 2123.6 2257.9 1721.3 1598.1 1614.6 1879.4 
Average MaxclDiv 1809.9 1290.2 1053.6 862.0 956.6 956.6 709.4 
Average solution time 0.0 0.0 125.9 1.6 56.3 60.9 91.8 
Average % change of 
MaxclDiv with respect to 
FCFS 

Base value 14% 32% 36% 30% 30% 48% 

Frequencies of the occurrence: times (%)  
Feasible solutions found 30 (100%) 30 (100%) 29 (97%) 30 (100%) 15 (50%) 15 (50%) 30 (100%) 
No feasible solution found 0 (0%) 0 (0%) 1 (3%) 0 (0%) 15 (50%) 15 (50%) 0 (0%) 
Generate better objective 
value than FCFS 0 (0%) 21 (70%) 22 (76%) 24 (80%) 11 (73%) 11 (73%) 27 (90%) 

Generate worst objective 
value than FCFS 0 (0%) 8 (27%) 4 (14%) 4 (13%) 1 (7%) 1 (7%) 0 (0%) 

Generate better objective 
value than FCFS with same 
solution time 

0 (0%) 21 (70%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Generate the best objective 
value 3 (10%) 6 (20%) 13 (45%) 9 (30%) 9 (60%) 9 (60%) 21 (70%) 

 

Summary of findings:  

1. Regardless of objective value of interest, all solution techniques provide lower average SumF, 

lower average MaxF, and lower average MaxclDiv compared to FCFS. More specifically, 

o ROTFT provides the lowest average SumF, followed by LDTFT, CTFT, TFT, HEU, 

and FCFS. 

o LDMFT provides the lowest average MaxF, followed by ROMFT, CMFT, MFT, 

HEU, and FCFS. 

o ROMDCAW provides the lowest average MaxclDiv, followed by CMDCAW, 

LDMDCAW, MDCAW, HEU, and FCFS. 

 

2. Regardless of objective value of interest, HEU can provide scheduling solutions with 

lower objective values than FCFS without any solution time adding, while for all other 

techniques more solution time can be expected when solutions with lower objective 

values are provided. 
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3. Chance of obtaining better quality scheduling solutions 

o In all experiments, SumF values obtained from ROTFT are better than or same as 

those obtained from FCFS. Whereas CTFT at 13%, TFT at 13%, and HEU at 13%, 

and  LDTFT at 9% of times are trapped in bad local optimal and result in higher 

SumF values. 

o In all experiments, MaxF values obtained from ROMFT, and LDMFT are better than 

or same as those obtained from FCFS. Whereas HEU at 20%, CMFT at 13%, and 

MFT at 10% of times are trapped in bad local optimal and result in higher MaxF 

values. 

o In all experiments, MaxclDiv values obtained from ROMDCAW are better than or 

same as those obtained from FCFS. Whereas LDMDCAW at 7%, CMDCAW at 13%, 

MDCAW at 14%, and HEU at 27% of times are trapped in bad local optimal and 

result in higher MaxclDiv values. 

o In 27 of 30 experiments (90%), SumF values obtained from ROTFT are better than 

those obtained from FCFS. Whereas LDTFT at 87%, CTFT at 83%, TFT at 83%, and 

HEU at 80% of times can offer better SumF value compared to FCFS. 

o In 22 of 25 experiments (88%), MaxF values obtained from LDMFT are better than 

those obtained from FCFS. Whereas ROMFT at 87%, MFT at 83%, CMFT at 80%, 

and HEU at 80% of times can offer better MaxF value compared to FCFS. 

o In 27 of 30 experiments (90%), MaxclDiv values obtained from ROMDCAW are 

better than those obtained from FCFS. Whereas CMDCAW at 80%, MDCAW at 

76%, LDMDCAW at 73%, and HEU at 70% of times can offer better MaxclDiv 

value compared to FCFS. 
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4. Chance of obtaining the best objective value  

o In 26 of 30 experiments (87%) the SumF from ROTFT turn out to be the best 

objective values.  Whereas LDTFT at 48%, CTFT at 40%, TFT at 27%, HEU at 20% 

and FCFS at 10% of times can offer the best SumF value. 

o In 23 of 30 experiments (77%) the MaxF from ROMFT turn out to be the best 

objective values.  Whereas LDMFT at 68%, MFT at 47%, HEU at 40%, CMFT at 

20% and FCFS at 10% of times can offer the best MaxF value. 

o In 21 of 30 experiments (70%) the MaxclDiv from ROMDCAW turn out to be the 

best objective values.  Whereas LDMDCAW at 60%, MDCAW at 45%, CMDCAW 

at 30%, HEU at 20%, and FCFS at 10% of times can offer the best MaxclDiv value. 

 

5. In terms of average solution time,  

o LDTFT total time consumes longest average solution time, followed by TFT, LDTFT 

best time, ROTFT, and CTFT.  

o LDMFT total time consumes longest average solution time, followed by MFT, 

LDMFT best time, ROMFT, and CMFT.  

o MDCAW consumes longest average solution time, followed by ROMDCAW, 

LDMDCAW total time, LDMDCAW best time, and CMDCAW.  

 

6. Chance of finding feasible scheduling solutions, 

o In 7 of 30 experiments (23%) LDTFT is not able to find feasible scheduling solutions. 

Whereas LDMFT at 17%, LDMDCAW at 50%, and MDCAW at 3% of the times are 

not able to find feasible scheduling solutions.  

 

To measure the competency among solution techniques, a comparison of descriptive 

information was also constructed. We, based on our interest, specified 5 key solution 

techniques performances as shown in table 4.5. The frequencies of occurrences reported in 

table 4.2, table 4.3, and table 4.4 are compared and analyzed to indentify the best solution 

techniques under each performance category. 
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Table 4.5: Descriptive Comparison of Solution Techniques 

 Objective value  
SumF MaxF MaxclDiv 

Ability to provide the best objective 
value ROTFT ROMFT ROMDCAW 

Ability to provide better objective 
value compared to FCFS ROTFT LDMFT ROMDCAW 

Ability to provide feasible 
scheduling solutions 

FCFS, HEU, TFT, 
CTFT, ROTFT 

FCFS, HEU, MFT, 
CMFT, ROMFT 

FCFS, HEU, CMDCAW, 
ROMDCAW 

Average % change in objective 
value compare to FCFS ROTFT LDMFT ROMDCAW 

Average speed of providing 
feasible scheduling solutions FCFS, HEU FCFS, HEU FCFS, HEU 

 

Due to the overall performances, we would recommend our Re-optimization 

approach for scheduling inbound calls in call center as it usually provides good quality 

solution within tight time regardless of which objective is of interest. Although our evidence 

shows Lagrangian Relaxation and Duality has higher frequencies of occurrence in finding 

MaxF value, the concern of its ability to provide feasible scheduling solution and its long 

solution time makes Re-optimization approach more appealing.  

 

One-tailed Paired T-test Statistics 

Tables 4.6, table 4.7 and table 4.8 summarize one-tailed paired t-test result of our 

findings when the objective is to minimize the total flow time, minimize the maximum of 

flow time, and minimize the maximum deviation of cumulative assigned workload, 

respectively. In the tables, we report the statistical comparison of solution techniques whether 

one solution technique performs better than another at 95% confidence level. The first result 

in each column is for comparing mean of objective values and the second result is for 

comparing mean of solution times. P-values of one-tailed paired t-test are provided in 

Appendix D.  
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Table 4.6: TFT – Statistical Comparison of Solution Techniques for Mean of Total Flow 
Time and for Mean of Solution Time at 95% confidence level 

Result of  
Paired T-test 

Compare to 
LDTFT 

Total time 
TFT LDTFT 

best time 
ROTFT CTFT HEU FCFS 

LDTFT total time = / = = / > = / > > / > = / >   < / > *   < / > * 
TFT    = / < * = / = = / = > / = = / >   < / > *   < / > * 
LDTFT best time = / < = / = = / = > / = = / >   < / > *   < / > * 
ROTFT    < / < *   < / = *   < / = * = / =   < / > *   < / > *   < / > * 
CTFT    = / < *     = / < *     = / < *   > / < = / =   < / > *   < / > * 
HEU > / < > / < > / < > / < > / < = / =   < / = * 
FCFS > / < > / < > / < > / < > / < > / = = / = 

Note that =, <, or > symbols are provided to indicate when one solution technique significantly provided equal, 
lower, or higher mean value than the other at the 95% confidence level. * indicates if one method is preferable 
to another. 
 

Table 4.7: MFT – Statistical Comparison of Solution Techniques for Mean of Maximum 
Flow Time and for Mean of Solution Time at 95% confidence level 

Result of  
Paired T-test 

Compare to 
LDMFT 

Total time 
MFT LDMFT 

best time 
ROMFT CMFT HEU FCFS 

LDMFT total time = / =   < / > * = / > = / >   < / > *   < / > *   < / > * 
MFT > / < = / = > / = > / = = / >   < / > *   < / > * 
LDMFT best time   = / < *        < / = * = / = = / =   < / > *   < / > *   < / > * 
ROMFT   = / < *     < / = * = / = = / =   < / > *   < / > *   < / > * 
CMFT > / <   = / < * > / < > / < = / =   < / > *   < / > * 
HEU > / < > / < > / < > / < > / < = / =    < / = * 
FCFS > / < > / < > / < > / < > / < > / = = / = 

Note that =, <, or > symbols are provided to indicate when one solution technique significantly provided equal, 
lower, or higher mean value than the other at the 95% confidence level.  
 

Table 4.8: MDCAW – Statistical Comparison of Solution Techniques for Mean of 
Maximum Deviation of Cumulative Assigned workload and for Mean of 
Solution Time at 95% confidence level 

Result of  
Paired T-test 

Compare to 
MDCAW LDMDCAW 

total time
LDMDCAW 

best time
HEU 

MDCAW
CMDCAW HEU FCFS

MDCAW  = / = = / = = / = > / > = / > = / >   < / > * 
LDMDCAW  
Total time 

= / = = / = = / > = / = = / >   < / > *   < / > * 

LDMDCAW 
Best time 

= / =    = / < * = / = = / = = / >   < / > *   < / > * 

ROMDCAW    < / < * = / = .= / = = / =   < / > *   < / > *   < / > * 
CMDCAW    = / < *    = / < *    = / < * > / < = / =   < / > *   < / > * 
HEU    = / < * > / < > / < > / < > / < = / =   < / = * 
FCFS > / < > / < > / < > / < > / < > / = = / = 

Note that =, <, or > symbols are provided to indicate when one solution technique significantly provided equal, 
lower, or higher mean value than the other at the 95% confidence level.  
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Summary of findings:  

One-tailed paired T-test shows at 95% confidence level: 

1. There is no significant difference among object values obtained from   

o TFT, CTFT, and LDTFT. 

o MFT and CMFT. 

o LDMFT and ROMFT. 

o HEU and MDCAW. 

o MDCAW, CMDCAW and LDMDCAW. 

o LDMDCAW and ROMDCAW. 

 

2. Comparison of Mean of SumF values 

o ROTFT significantly provides the scheduling solutions with lower SumF values than 

any solution techniques. 

o CTFT significantly provides the scheduling solutions with lower SumF values than 

HEU and FCFS. 

o HEU significantly provides the scheduling solutions with lower SumF values than FCFS. 

 

3. Comparison of Mean of MaxF values 

o ROMFT and LDMFT significantly provide the scheduling solution with lower MaxF 

values than any solution techniques. 

o CMFT and MFT significantly provide the scheduling solutions with lower MaxF than 

HEU and FCFS with 98% confidence.  

o HEU significantly provides the scheduling solutions with lower MaxF than FCFS 

with 96% confidence. 
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4. Comparison of Mean of MaxclDiv values 

o ROMDCAW significantly provide the scheduling solution with lower MaxclDiv 

values than all solution techniques, except LDMDCAW. 

o LDMDCAW and CMDCAW significantly provide the scheduling solutions with 

lower MaxclDiv than HEU and FCFS.  

o HEU significantly provides the scheduling solutions with lower MaxclDiv than FCFS. 

 

5. There is no significant difference among solution times obtained from   

o TFT, ROTFT, and LDTFT best time. 

o MFT, ROMFT, and LDMFT best time. 

o MDCAW and LDMDCAW total time 

o MDCAW and LDMDCAW best time 

o LDMDCAW best time and ROMDCAW  

 

6. Comparison of Mean of solution times 

o CTFT consumes significantly less solution time than LDTFT, ROTFT and TFT. 

o LDTFT total time consumes significantly more solution time than other solution techniques. 

o CMFT consumes significantly less solution time than LDTFT, ROMFT and MFT. 

o LDMFT total time consumes significantly more solution time than other solution techniques. 

o CMDCAW consumes significantly less solution time than MDCAW, LDMDCAW, 

and ROMFT. 

o Regardless of objective value of interest, our numerical results show that Lagrangian 

Relaxation and Duality significantly consumes less solution time if good Lagrangian 

multipliers can be established.  

 

7. From 1 to 7, we can conclude at 95% confidence level that 

When objective is to minimize the total flow time 

For SumF value: FCFS>HEU>LDTFT=TFT=CTFT>ROTFT 

For solution time: LDTFT total time>TFT=ROTFT= LDTFT best time>CTFT >HEU=FCFS 
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When objective is to minimize the maximum flow time 

For MaxF value: FCFS>HEU>MFT=CMFT>LDMFT=ROMFT 

For solution time: LDMFT total time>MFT=LDMFT best time=ROMFT>CMFT >HEU=FCFS 

When objective is to minimize the maximum deviation of cumulative assigned workload 

For MaxclDiv value:  

FCFS>HEU 

HEU>CMDCAW>ROMDCAW 

HEU=MDCAW 

MDCAW=CMDCAW=LDMDCAW 

LDMDCAW=ROMDCAW 

For solution time:  

  MDCAW=LDMDCAW total time 

 MDCAW=LDMDCAW best time 

 ROMDCAW=LDMDCAW total time 

 ROMDCAW=LDMDCAW best time 

MDCAW>ROMDCAW 

LDMDCAW total time>LDMDCAW best time 

 ROMDCAW>CMDCAW>HEU=FCFS 

 

In addition to the results from one-tailed paired t-test, we indicate if one solution 

technique is preferable to another by using * symbol. Solution technique A is preferable to 

Solution technique B when it can either provide better quality scheduling solutions or use less 

time to provide same or better quality scheduling solutions. Our findings show that Re-

optimization approach is the most preferable when objective is to minimize the total flow time. 

When objective is to minimize the maximum flow time or to minimize the maximum deviation 

of cumulative assigned workload, Lagrangian Relaxation and Duality could be as preferable as 

Re-optimization approach if we can improve the ability of finding feasible scheduling solution. 

However if solution time is a concern to call centers, Cutting Plane Algorithm is the next 

preferable method as it can significantly provide same solution with less solution time than the 

original IPs at 95% confidence level.  
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4.3 Conclusion of Solution Techniques  

In this chapter, we show that Re-optimization approach, Lagrangian Relaxation and 

Duality, and Cutting Plane algorithm are effective solution techniques for inbound call 

scheduling problems. This finding renders the use of optimization approach for real time 

scheduling of inbound calls. 

The use of valid inequalities as cut constraints allows IPs to quickly find good feasible 

scheduling solutions. Applying cutting plane algorithm to our inbound calls scheduling 

problem, the solution time is significantly reduced when the quality of the solutions is 

unchanged. To obtain better quality solutions, the Lagrangian Relaxation and Duality and the 

Re-optimization approach might be better option. When solving with subgradient algorithm, 

the ability to provide feasible scheduling of Lagrangian Relaxation and Duality is in concern. 

However the ability of finding good scheduling solutions still makes this solution technique 

meaningful.  

It is not surprising that Re-optimization approach shows superior in finding good 

scheduling solutions. The logic of applying good heuristic feasible scheduling solutions as 

initial feasible solutions to the IPs not only guarantees that the worst solution than FCFS will 

never be obtained, it also increases the possibility of escaping from one local optimum. HUE, 

with no solution time required, has ability to provide better quality solution than FCFS. Hence 

it is an effective method to find feasible scheduling solutions.   
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CHAPTER 5. CASE STUDY 

While numerical studies in chapter 3 and chapter 4 have demonstrated that the 

performance of call centers can be improved by employing an optimization approach for 

scheduling inbound calls, in this chapter, we adopt a case study to investigate the capabilities 

of solution techniques developed in this research study to handle inbound call scheduling 

problem of a call center. Based on the call center’s characteristic, our research findings in 

chapter 4, and the limitation of the IP solver software used in this research study, we 

suggested a composite solution technique for inbound call scheduling and then construct a 

numerical experiment to compare the call center performances as resulted from using its 

current inbound call scheduling method with the suggested solution techniques. 

 5.1 Description of Call Center  

The call center in this case study is modeled based on the same actual operational call 

center used in chapter 3.  

As mentioned in chapter 3, within the call center, there are 43 CSRs working under 8 

supervisors. Each CSR is scheduled to work 7.5 hours per day excluding break and lunch 

time. Shifts are planned to meet the incoming call volumes. Only two or three CSRs will 

share the same schedule in order to spread the available work evenly throughout the center’s 

working hours from 8AM to 6PM. CSRs are skilled to work on multiple types of calls. Most 

CSRs are specialized in certain types of calls, and hence have faster service rates for those 

calls, while only minimally trained on others, and hence have slower service rates on those 

calls. Again although this model call center can handle both inbound and outbound calls only 

inbound calls are treated in this case study. Note that type of calls is referred as split in this 

call center. 

As described by Barton (2004), when a customer dials a 1-800-###-#### number, the 

caller is placed into the main voice response unit (VRU) queue. If the caller request to speak 

with a CSR, then he will go into one of nine Split queues before being transferred.  The CSR 

will then handle the call.  The service times were extracted from the CMS system for each 

Customer Representative for each split. Each CSR is given a skill set (1-4) based on their 
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ability to take that specific type of call.  When a call enters a Split queue, the system will 

attempt to get a CSR according to the following algorithm: 

ROUTING LOGIC TO CSR 

1) Attempt to find all CSRs with a skill set of ‘1’.   

IF there is no Level 1 CSR available or CSR is off-shift to assist the customer THEN #2 

ELSE CSR will answer the call 

2)  Attempt to find a CSR that has a ‘2’ rating.   

IF there is no Level 2 CSR available or off-shift to assist the customer THEN #3 

ELSE CSR will answer the call 

3)  WAIT 1 second 

IF there is no Level 1 or Level 2 CSR available or off-shift to assist the customer THEN 

IF time in Split Queue is greater than 45 seconds or Queue contents > 3 THEN #4  

ELSE wait 1 second THEN #1 

ELSE CSR with Skill Set ‘1’ or ‘2 ‘will answer the call 

4) Attempt to find a CSR that has a ‘3’ rating. 

IF there is no Level 3 CSR available or off-shift to assist the customer THEN 

5)  WAIT 1 second 

IF there is no Level 1 or Level 2 or Level 3 CSR available or off-shift to assist the customer 

THEN 

IF time in Split Queue is greater than 60 seconds or Queue contents > 5 THEN #6 

 ELSE wait 1 second THEN #1 

ELSE CSR with Skill Set ‘1’ or ‘2 ‘ or ‘3’ will answer the call 

6)  Attempt to find a CSR that has a ‘4’ rating. 

IF there is no Level 1 or Level 2 or Level 3 or Level 4 CSR available or off-shift to assist the 

customer THEN #1 

ELSE CSR with Skill Set ‘1’ or ‘2 ‘ or ‘3’ will answer the call 

 

Since the call center believes if the timely service does not exist, customers will take 

their business elsewhere, their routing logic depends on the call type and the skill set of the 

CSR and this logic is referred as ‘WHAT IF’ scenario method.   
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5.2 Selection of Solution Technique  

According to our findings in chapter 4, Re-optimization approach is the most preferable 

when objective is to minimize the total flow time. When objective is to minimize the maximum 

flow time or to minimize the maximum deviation of cumulative assigned workload, 

Lagrangian Relaxation and Duality could be as preferable as Re-optimization approach if we 

can improve the ability of finding feasible scheduling solution. However if solution time is a 

concern to call centers, Cutting Plane Algorithm is the next preferable method 

Due to the size of the call center used in this case study (i.e., 32 CSRs), we experienced 

the long solution time when using Re-optimization and the Lagrangian Relaxation and Duality 

approach. This long solution time issue has become a big concern and prohibited the use of the 

Re-optimization and the Lagrangian Relaxation and Duality approach. We therefore in this 

chapter turn our focus to FCFS, HEU, and cutting plane methods since these solution 

techniques require relatively small solution time. 

For the experiment, we proposed a composite procedure as outlined below:  

Initialization: Given the previous scheduling solutions (
1

X ). 

 

Step 1: Obtain the feasible scheduling solutions (
'1

X ) from the HEU method.  

 

Step 2: Use optimization to obtain new scheduling solutions (
CUT

X ) by solving IPs with the 

cutting plane algorithm as solution techniques.  

  

Step 3: Compare call center performances offered by 
'1

X  with those offered by FCFS 

scheduling solutions (
FCFS

X ), and those offered by the optimization (
CUT

X ), choose the 

scheduling solutions which can provide the best performance as the scheduling solutions 

(
2

X ). 

If the IP employed in step 2 is CTFT, in this research, we will refer the new mix 

approach as MIXTFT. In the same fashion, we derive MIXMFT, and MIXMDCAW. The 

above mix approach is depicted in figure 5.1 
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                                      HEU method 
 
 
 

 
 

Previous scheduling solutions 
1

X  

 

Figure 5-1. Mix Approach 

 

5.3 Numerical Example 

In the preceding section, we introduced the mix approaches and also described the 

step of applying the approaches to solve inbound calls scheduling problem in a call center. In 

this section, we set up an experiment to compare the performances of the call center resulting 

from using the mix approaches as the suggested solution techniques and those resulting from 

using the current routing method as explained in section 5.1.  

FCFS 
schedule of 
new calls 

Current Schedule Served Calls 

 
'1

X  Heuristic feasible scheduling solutions

FCFS scheduling 

solutions 
FCFS

X  
Compare 

performances 

Cutting Plane IPs 
scheduling solutions 

CUT
X  

2
XNew scheduling solutions  
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5.3.1 Experiment Design  

As our attempt to construct a modeled call center to be as realistic as possible, most 

of the parameter settings used in our modeled call center was either directly obtained from or 

derived from the data extracted by CMS system of the actual system which was reported by 

Barton (2004). The detail of data generation for these parameter settings is provided in the 

next section. 

5.3.2 Data Generation 
This section provides details on how the data were obtained and then manipulated to 

get the data set in appendix E.  

1) Utilization rate 

Since the information of agent utilization was not offered by Barton (2004), the 

utilization rate of intermediate (90%) was randomly selected for this case study. 

 

2) Server dependent processing time Pij 

When calls are taken by the CSR, the time is tracked according to what is called After 

Call Delay Time (or ACD Time). Each CSR handles a call differently, thus ACD times are 

different for each CSR and for each type of call. In this study we set server dependent 

processing time (Pij) to the associated average ACD time. 

 

3) Number of CSR n(t) 

Based on the work shift schedule reported by Barton (2004), there are approximately 

32 CSRs available on average. Thus, the number of CSRs n(t) was set to be 32 for this case 

study. 

 

4) Call Arrival Patterns 

As observed by Barton (2004), calls arrive differently depending on the time of day, 

and the day of week. The number of inbound calls in each split were captured and 

summarized in daily basis. For this case study, there are nine types of calls, which we simply 

refer to as Type I, Type II, Type III, Type IV, Type V, Type VI, Type VII, Type VIII, and 
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Type IX. The percent share for each type of call is approximated and reported with its call 

arrival rates that satisfy the randomly generated utilizations.  

Table 5.1: Percent Share for Each Type of Call 
 

Utilization Rate 
 90% 
Type I call’s arrival rate: λ1   (calls/hr) 235 
Type II call’s arrival rate: λ2   (calls/hr) 11 
Type III call’s arrival rate: λ3   (calls/hr) 8 
Type IV call’s arrival rate: λ4   (calls/hr) 59 
Type V call’s arrival rate: λ5   (calls/hr) 258 
Type VI call’s arrival rate: λ6   (calls/hr) 41 
Type VII call’s arrival rate: λ7   (calls/hr) 3 
Type VIII call’s arrival rate: λ8   (calls/hr) 10 
Type IX call’s arrival rate: λ9   (calls/hr) 1 

 

With the same manner to generate inter-arrival time described in chapter 3, we 

continue to assume that the time between call arrivals is exponentially distributed.  

Two simple data generation functions: 1) RANDBETWEEN ( ) in Microsoft Excel 

and 2) rexp ( ) in R were used to generate data sets. Table 5.2 summarizes the detail of how 

the data sets are generated. 

Table 5.2: Data Generating Function 

Parameter Data Generating Function Unit 

Utilization rate RANDBETWEEN (1,3) 

1 for 85%, 2 for 90% , 3 for 100% 

% 

Inter-arrival time rexp(n,lamda) Seconds 

Note: n is the number of observations, lamda is the desired call arrival rate. 
  

With the above parameter setting and numerical data generation described above, a 

call center with the total of 30 inbound calls was generated with associated inter-arrival times 

and call types. The experiment compares the call center’s performances among the different 

scheduling methods. The scheduling method is one of the mix approach (that is, MIXTFT, 

MIXMTF, and MIXMDCAW), and the current routing logic used at the actual call center 

(that is, WHAT IF).  All of the optimization problems are solved on an INSPIRON B120 

with a LINGO 10.0 commercial solver.  

   



www.manaraa.com

 79

5.3.3 Discussion of Results 

To measure the competency among the three mix approaches and the WHAT IF 

approach for inbound call scheduling in the case study call center, we conducted 1) 

descriptive statistics; and 2) one-tailed paired t-test statistics.  

 

Descriptive Statistics 

Tables 5.3 summarizes descriptive statistics of our findings.   

Table 5.3: TFT – Descriptive Statistics 
Unit: seconds WHAT IF MIXTFT MIXMFT MIXMDCAW 
SumF 5364.6 3964.6 3895.6 3832.8 
MaxF 258 186.8 188.8 127.76 
MaxclDiv 159.34 198.3 245.81 148.2 
Average F 178.82 124.36 129.85 148.2 
Max W  45 94 115.6 10 
Average W  5 17.27 18.31 1.04 
Average solution time approx. 0 4.7 3.8 approx. 0 
% change of SumF with respect to WHAT IF  Base value 26% 27% 29% 
% change of MaxF with respect to WHAT IF Base value 26% 25% 49% 
% change of MaxclDiv with respect to WHAT IF Base value 24% 54% 7% 
Generate better objective value than WHAT IF Base value Yes Yes yes 
Frequencies of the occurrence: times (%) 
Feasible solutions found 30 (100%) 30 (100%) 30 (100%) 30 (100%) 
No feasible solution found 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

 

Table 5.4: Descriptive Comparison of Solution Techniques 

 Objective value  
SumF MaxF MaxclDiv 

Provide best objective value  MIXMDCAW MIXMDCAW MIXMDCAW 
Provide better objective value 
compared to WHAT IF 

MIXMDCAW,  
MIXMFT, MIXTFT  

MIXMDCAW,   
MIXTFT, MIXMFT MIXMDCAW 

% change in objective value  
compare to WHAT IF MIXMDCAW MIXMDCAW MIXMDCAW 

Average speed of providing  
feasible scheduling solutions WHAT IF, MIXMDCAW WHAT IF, MIXMDCAW WHAT IF, MIXMDCAW 

 

From the descriptive statistics, we found that with the MIXTFT and MIXMFT, the 

call center experienced the higher call’s waiting time. This mainly was due to the solution 

time of the optimization component of the approach. However this is well worth waiting 

since the better scheduling solutions can be found and as a consequence, the flow time can be 

reduced.  
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From our experiment, MIXMDCAW turned out to be a good approach in all 

performance measure. In this case study, the problem size in each optimization when we 

applied MIXMDCAW was so small that the solution time was close to zero second.  

Due to the overall performances, we would recommend our MIXMDCAW approach 

for scheduling inbound calls in this call center as it usually provides good quality solution 

within tight time regardless of which objective is of interest.  

 

One-tailed Paired T-test Statistics 

Tables 5.5 and table 5.6 report the statistical comparison of solution techniques 

whether one solution technique can provide better call flow time and call waiting time than 

another at 95% confidence level. Note that =, <, or > symbols are provided to indicate when 

one solution technique significantly provided equal, lower, or higher mean value than the 

other at the 95% confidence level. 

Table 5.5: Results of Paired T-test for Comparing Flow Time (F) 
P(T<=t)  one-tailed Compare to 

WATIF MIXTFT MIXMFT MIXMDCAW 
WHATIF = 0.000 (>) 0.000 (>) 0.000  (>) 
MIXTFT 0.000 (<) = 0.356 (=) 0.330 (=) 
MIXMFT 0.000 (<) 0.356 (=) = 0.406 (=) 
MIXMDCAW 0.000 (<) 0.330 (=) 0.406 (=) = 

Table 5.6: Results of Paired T-test for Comparing Waiting Time (W) 
P(T<=t)  one-tailed Compare to 

WATIF MIXMDCAW MIXTFT MIXMFT 
WHATIF = 0.942 (=) 0.014 (<) 0.038 (<) 
MIXMDCAW 0.942 (=) = 0.356 (=) 0.006 (<) 
MIXTFT 0.014 (>) 0.356 (=) = 0.562 (=) 
MIXMFT 0.038 (>) 0.006 (>) 0.562 (=) = 

 

Summary of findings:  

One-tailed paired T-test shows at 95% confidence level: 

1. Comparison of F values 

o MIXTFT, MIXMFT, and MIXMDCAW significantly provide the scheduling 

solutions with lower F values than WHAT IF approach. 
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o There is no significant difference among F values obtained from  MIXTFT, 

MIXMFT, and MIXMDCAW. 

2. Comparison of W values 

o WHAT IF approach significantly provides the scheduling solution with lower W 

values than MIXMFT and MIXTFT. 

o MIXMDCAW significantly provides the scheduling solution with lower W values 

than MIXMFT. 

o There is no significant difference among W values obtained from MIXMDCAW and 

WHAT IF.  

o There is no significant difference among W values obtained from MIXMDCAW and 

MIXTFT.  

o There is no significant difference among W values obtained from MIXTFT and 

MIXMFT.  

 

3. There is no significant difference among W value obtained from   

o MIXMDCAW and WHAT IF.  

o MIXMDCAW and MIXTFT.  

o MIXTFT and MIXMFT.  

 

4. From 1 to 3, we can conclude at 95% confidence level that 

For F value: WHAT IF>MIXTFT=MIXMFT=MIXMDCAW 

For W value:  

WHAT IF = MIXMDCAW < MIXMFT 

 WHAT IF < MIXTFT 

MIXMDCAW = MIXTFT 

MIXTFT = MIXMFT 

 

Our findings from the t-test show that MIXMDCAW is the most preferable method to 

significantly reducing call flow time while keeping the waiting time unchanged. However, 
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MIXTFT and MIXMFT are still a preferable method to the current inbound calls routing logic 

used by the center since it significantly reduce the mean flow time.  

5.4 Conclusion of Case Study  

In this chapter, we suggested a composite method among cutting plane algorithm, 

FCFS and HEU method to help call center improve its performances. The results indicated that 

the suggested solution approach can offer effective solution techniques for inbound call 

scheduling problems under tight time constraint. This finding confirms the benefit of using the 

optimization approach for real time scheduling of inbound calls. 
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CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 

 

6.1 Conclusion 

The purpose of our study has been to identify an effective approach for scheduling 

inbound calls in call centers. To achieve the objective, we have developed three different 

Integer Programming (IP) problems for inbound call scheduling, with objective functions of 

1) minimizing the Total Flow Time (TFT), 2) minimizing the Maximum Flow Time (MFT) 

of any call, and 3) minimizing the Maximum Deviation of Cumulative Assigned Workload 

(MDCAW) for CSRs.  

The performance of those developed IPs were demonstrated through numerical 

examples. The experiment is designed to be realistic based on the model provided by the 

actual call center. In our study, three cases of skill distribution are considered in the 

experiment: In Case I, each CSR is skilled to work with only one type of call. In Case II, 

there are identical CSRs that skilled to work with any types of call. In Case III, CSRs are 

skilled to work with any types of call but at the different service rate. The results of 

numerical experiment evaluates under what conditions these IP formulations give superior 

performance and which objective should be chosen. Results indicate that optimization 

compares favorably to FCFS under realistic scenarios involving specialized but broadly 

trained CSRs and high call center utilization rates.  

While the performance of call centers can be improved by employing an optimization 

approach for scheduling inbound calls, the long computation times could limit it use in a real-

time ACD system. Four solution techniques consisting of IP reformulation, Lagrangian 

relaxation and duality, cutting plane algorithm, and heuristic optimization approach are 

purposed for solving the formulated IPs. There are therefore twelve new IPs: 1) 

Reformulated problem TFT (RTFT), 2) Reformulated problem MFT (RMFT), 3) 

Reformulated problem MDCAW (RMDCAW), 4) Lagrangian Dual of problem TFT 

(LDTFT), 5) Lagrangian Dual of problem MFT (LDMFT), 6) Lagrangian Dual of problem 

MDCAW (LDMDCAW), 7) Cutting Plan algorithm of problem TFT (CTFT), 8) Cutting 
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Plan algorithm of problem MFT  (CMFT), 9) Cutting Plan algorithm of problem MDCAW 

(CMDCAW), 10) Heuristic Optimization approach of problem TFT (HEUTFT), 11) 

Heuristic Optimization approach of problem MFT (HEUMFT), and 12) Heuristic 

Optimization approach of problem MDCAW (HEUMDCAW). 

In exploring the feasibility of the purposed solution techniques, we adopt a 

preliminary experiment. In this experiment, only the IPs with the total flow time objective 

function are investigated to evaluate the feasibility of the purposed solution techniques. We 

also developed Lagrangian relaxation with respect to the sequencing constraints of problem 

TFT (LRTFT) to obtain the lower bound values of problem LDTFT. The quality of bound 

generating by the continuous relaxation (CR) of RTFT, LRTFT when Lagrangian multiplier 

(λ) is set to be 0, the CR of CTFT, and HEUTFT versus the CR of TFT under a tight time 

constraint were explored and compared. The preliminary indicates that Reformulation 

techniques consumed long solution time and provided weak bound value. Hence, all of the 

purposed solution techniques, except for the IP reformulation technique, were very promising 

and were included in our further examination 

The second phase (the actual experiment) was set up to examine the effect of 

Lagrangian Relaxation and Duality, Cutting Plane Algorithm, and Heuristic Optimization 

approach. In addition to these promising solution techniques, we also included HEU method, 

the logic of obtaining heuristic feasible scheduling solutions, as another solution technique in 

our focus. To signify the effective approaches for scheduling inbound calls, the objective 

values and the computational times of solving the IPs using a standard solver were compared. 

Results indicate that Heuristic Optimization approach is the most preferable when objective is 

to minimize the total flow time. When objective is to minimize the maximum flow time or to 

minimize the maximum deviation of cumulative assigned workload, Lagrangian Relaxation 

and Duality could be as preferable as Heuristic Optimization approach if we can improve the 

ability of finding feasible scheduling solution. However if solution time is a concern to call 

centers, Cutting Plane Algorithm is the next preferable method.  

A case study of a call center was also conducted to illustrate the use of Optimization 

approach for real time scheduling of inbound calls. In this study, we suggested a composite 

method among cutting plane algorithm, FCFS and HEU method to help the modeled call center 



www.manaraa.com

 85

improve its performances. Three new mix approach (that is, MIXTFT, MIXMFT, and 

MIXMDCAW) were introduced. We then constructed a numerical experiment to compare the 

call center performances resulted from using the suggested solution techniques with its 

current inbound call scheduling method (referred as WHAT IF method). The descriptive 

statistics and t-test results indicated that the suggested solution approaches is preferable to the 

WHAT IF method since it can offer effective solution techniques for inbound call scheduling 

problems under tight time constraint.  

In conclusion, this study shows that the performance of call centers can be improved 

by employing an optimization approach for inbound call scheduling. With effective solution 

techniques call center manager can obtain good schedule quality within reasonably solution 

times.  

6.2 Future Research 

1. In this study we have shown that our purpose scheduling methods are very 

effective for scheduling inbound calls in busy small-sized call centers (less than 10 CSRs). 

We believe that the same techniques can be used in bigger-sized call centers as well. One 

possibility is to divide the call centers in to smaller groups so that the techniques can be 

implemented to find scheduling solutions. 

2. Although our reformulation IPs are not effective, the other approach, such as set 

covering problem, might be more suitable for reformulate the inbound calls scheduling 

problem. 

3. There are several methods for solving Lagrangian dual problems. In our study, we 

used a simple subgradient algorithm to solve the problem. We found that the quality of the 

solutions is superior to those obtained from FCFS; however, on occasion feasible solutions 

could not be obtained due to time limitation. Applying more powerful solution techniques for 

solving Lagrangian dual might be more appropriate.  
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APPENDIX A. THE COMPLETE LIST OF NOTATION 

This appendix shows the completed list of notation using in this research paper. 

Variable Name Description 
ACLj(t) Actual cumulative work load of CSR j calculated at time t 
AvgF Average flow time of a call 
AvgN Average number of calls in system 
AvgW Average waiting time for a call 
CLj(t) cumulative assigned work load of CSR j calculated at time t 
Fi(t) flow time of call i at time t 
I Set of calls 
J Set of CSRs 
Ji(t) CSR which is assigned at time t to serve call i at time t 
L Load balance factor 
m(t) Number of calls in the call center at time t waiting to be service 
Maxcldiv Maximum deviation of assigned workload 
MaxF Maximum flow time of a call 
MaxN Maximum number of calls 
MaxW Maximum waiting time for a call 
n(t) Number of CSRs in the call center at time t 
Pij Server dependent processing time of call i served by CSR j 
Q Set of queue positions 
Qi(t) Queue position of call i at time t 
QLi(t) Queue length or the total processing time spent by a CSR to complete calls prior than 

call i at time t 
rj(t). Remaining serving time of CSR j at time t 
SAi(t) Speed answer or the total time it takes to answer call I at time t 
sj(t) Number of calls that CSR j started the service after time t and before t1 
SL Call center service level, which is usually defined as some fixed Z percent of calls 

answered in Y seconds. 
t Time period that call center performs the optimization to scheduling inbound calls 
t1 Time period that call center will perform the next optimization to scheduling inbound 

calls 
t0 Time period that call center previously performs optimization to scheduling inbound 

calls 
Uij(t) An inbound call scheduling decision at time t, which equals 1 if call i is assigned to 

CSR j, and equals 0 otherwise.  
Viq(t) An inbound call scheduling decision at time t, which equals 1 if call i is sequenced to be 

at queue position q, and equals 0 otherwise.  
wi(t) Waiting time of call i at time t 
Xijq(t) An inbound call scheduling decision at time t, which equals 1 if call i is assigned to 

CSR j at queue position q, and equals 0 otherwise. 
FCFS

X  Scheduling solutions from FCFS 
1

X  Scheduling solutions from the previous optimization 
'1

X  Heuristic feasible scheduling solutions 
*1

X  Initial feasible scheduling solutions 
2

X  New scheduling solutions deriving from the proposed heuristic approach 
χ{f(t)≤g(t)} Counting index equals 1 if f(x)≤g(x) and equals 0 otherwise. 
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APPENDIX B. PRELIMINARY EXPERIMENT 

 
To explore the feasibility of the purposed solution techniques, we adopt a preliminary 

experiment. In experiment, we vary the number of calls and number of CSRs in a setting in a 

range from 4 to 9. There are therefore 36 different settings. For every setting, two number of 

time (in second) are randomly generated. The smaller number, at 250 seconds, is used as the 

time period that call center performs the optimization to scheduling inbound call (t). The 

bigger number, at 454 seconds, is used as the time period that call center will perform the 

next optimization to scheduling inbound calls. Therefore the time horizon considered t- t1 is 

set to 204. We also specify the call center’s parameter settings using the randomly simulated 

preliminary experiment’s data set as shown in Table B.1, Table B.2 and Table B.3.  

Table B.1: Call type and its waiting time wi(t) 
Call i 1 2 3 4 5 6 7 8 9 

Type 1 2 1 3 1 1 2 3 1 
wi(t) 45 32 30 30 27 14 7 3 1 

Table B.2 CSR Actual cumulative workload Aclj(t0) and remaining serving time rj(t) 
CSR j 1 2 3 4 5 6 7 8 9 

Aclj(t0) 12 35 54 45 0 16 32 3 34 
rj(t) 132 114 56 233 322 130 345 34 67 

Table B.3 Server dependent processing time Pij 
CSR j 1 2 3 4 5 6 7 8 9 

Call Type 

1 15 56 12 45 130 42 234 45 87 
2 50 12 78 45 24 89 200 69 87 
3 23 25 12 20 65 42 134 167 145 

 

   



www.manaraa.com

 91

In the preliminary experiment, we attempt to explore and compare the solution time 

and the quality of bound generating by the continuous relaxation (CR) of RTFT, LDTFT, the 

CR of CTFT, and HEUTFT versus the CR of TFT under a tight time constraint which is set, 

as an example, to be 180 seconds. However, with the time limitation, it is not possible for us 

to develop the programming code for solving Lagrangian Dual. Therefore in our preliminary 

experiment; we develop the programming code for solving Lagrangian relaxation with 

respect to the sequencing constraints of problem TFT to obtain the lower bound values of 

problem LDTFT. For more simplicity, we specify the Lagrangian multiplier (λ) to be 0, and 

refer the problem as LRTFT. As a consequence, we can only explore and compare the 

solution time and the quality of bound generating by the CR of RTFT, LRTFT, the CR of 

CTFT, and HEUTFT versus the CR of TFT under a tight time constraint which is set to be 

180 seconds. There are therefore 180 scenarios. 

Under each scenarios, the solution time, number of iteration, and the objective value 

obtain are observed and compared. In this experiment, the reason we only work with the total 

flow time objective function is that we believe with only an objective function we have some 

idea of the feasibility of the purposed solution techniques.  

We use an INSPIRON B120 to run our experiment with LINGO 10.0 as an 

optimization solver. We found that: 

1) In 3 of 36 experiments using the CR of RTFT, and 1 of 36 experiments using LRTFT 

could not provide the solution within 180 sec, while all of the experiments using CTFT 

and TFT can provide the solution for the CR problem. HEUTFT always provides 

solutions. Hence, among the proposed technique solutions CTFT, LRTFT, HEUTFT are 

promising approaches to explore for the total flow time objective. 

2) In 8 of 33 experiments using RTFT, 35 of 36 experiments using CTFT, the solution for 

the CR problem are also the IP solutions, while only 15 of 36 experiments using the CR 

of TFT can provide the IP solution. HEUTFT and LRTFT always provide integer 

solutions. Hence, CTFT is a strong approach to provide an upper bound and HEUTFT is 

a strong approach to provide an initial feasible solution for the total flow time objective.  

3) The one-way ANOVA test between the CR of RTFT, LRTFT, the CR of CTFT, and 

HEUTFT versus the CR of TFT are performed for solution time, number of iteration and 
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the objective value to determine the different between approaches. Their average value 

and p-value are given table B.4  

Table B.4 One-way ANOVA test 

CR of TFT VS  
Solution time (sec) # of Iteration Objective value (sec) 

TFT Avg Avg P-Value TFT Avg Avg P-Value TFT Avg Avg P-Value 

CR of RTFT 

17.11 

98.42 1.3E-06 

15399.14 

49833.58 8.3E-04 

566.55 

399.48 1.1E-03 

CR of CTFT 4 4.7E-02 1491.06 4.3E-02 595.72 6.0E-01 
LRTFT  3.26 3.8E-02 1650.06 4.6E-02 51023 2.6E-01 

HEUTFT 0 9.4E-02 0 2.4E-02 853.97 4.8E-04 

ANOVA test indicates that: 

- There are significantly differences in solution time and number of iteration to find the 

solution between all techniques versus CR of TFT with 99% confidence. However, RTFT 

tends to use more solution time and have higher number of iteration than every approach 

to obtain bound value. Hence, all the proposed solution techniques, except RTFT, are 

very strong approaches to decrease solution time, and number of iteration. 

- There are significantly differences in objective value between CR of RTFT, and 

HEUTFT versus CR of TFT with 99% confidence, between LRTFT versus CR of TFT 

with 95% confidence. However for CR of CTFT, such confidence cannot be established. 

We found that the CR of RTFT tends to provide weaker lower bound than the CR of 

TFT. For LRTFT, although we found that its lower bound quality obtained is slightly 

worst than CR of TFT, its solution time does makes it a promising approach. In addition, 

since LRTFT only provides a lower bound value to LDTFT, and in theory, the 

Lagrangian dual is a stronger relaxation than the continuous relaxation, hence it is still 

worth to continue exploring the LDTFT technique.  

- In term of quality of the upper bound CTFT is a better approach. This is as our 

expectation since the objective value from HEUTFT is not actual upper bound. However 

it is still benefit to use HEUTFT approach to provide an initial solution to the 

optimization.  
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- Table B.5 provides p-value of a one-way ANOVA test between CR of CTFT versus 

HEUTFT. From the one-way ANOVA test, we can say with 99% confidence that CR of 

CTFT and HEUTFT are different in solution time, number of iteration and objective 

value. This mean CTFT and HEUTFT are competitive approaches since although we 

found CTFT is good to provide upper bound value but it takes more solution time and 

higher number of iteration to solve for the solution. 

Table B.5 One-way ANOVA test between CTFT and HEUTFT 

 
P-value 

Solution time (sec) # of Iteration Objective value (sec) 

CR of CTFT VS HEUTFT 3E-05 1E-03 1E-03 

In conclusion of the preliminary result, we believe that all of the purposed solution 

techniques, except for the IP reformulation technique, are very promising and worth 

continuing examination 
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APPENDIX C. DATA SETS USED IN                                                   

SOLUTION TECHNIQUE EXPERIMENTS  

Table C.1: Call arrival rate λ, number of CSRs n(t), number of calls m(t) 

Case λ n(t) m(t) Case λ n(t) m(t) 
TFT MFT MDCAW TFT MFT MDCAW 

1 18 4 3 3 8 16 22 4 3 3 7 
2 32 5 3 2 5 17 15 7 4 4 4 
3 19 6 3 2 7 18 25 8 2 2 2 
4 17 5 3 3 3 19 12 6 3 3 3 
5 12 3 5 4 4 20 18 4 3 3 5 
6 26 9 2 2 2 21 17 6 3 3 4 
7 23 5 3 2 2 22 28 9 3 3 3 
8 9 4 4 4 4 23 14 7 2 2 2 
9 21 6 4 4 4 24 16 6 3 3 4 

10 31 9 3 2 2 25 21 8 3 2 2 
11 23 6 2 2 2 26 11 4 2 3 6 
12 20 7 3 3 3 27 22 7 2 2 2 
13 11 4 2 2 2 28 16 4 6 4 6 
14 12 5 3 3 3 29 14 5 2 2 3 
15 23 7 2 2 2 30 20 6 2 3 2 

Table C.2: Server dependent processing time Pij 

Case 
Call 

Type 

CSR j 

1 2 3 4 5 6 7 8 9 

1 
1 101 557 789 78      
2 286 422 193 1159      
3 2023 566 1379 1019      

2 1 317 287 682 130 248     
2 317 278 555 1353 4678     
3 230 122 72 255 154     

3 1 716 228 399 402 991 1496    
2 696 153 2332 580 261 169    
3 114 140 2375 444 949 1345    

4 1 1080 498 69 1478 743     
2 1504 1125 4084 1567 1989     
3 33 93 270 25 6     

5 1 789 692 739       
2 183 524 65       
3 520 192 910       

6 1 2143 981 151 1591 1636 670 616 110 722 
2 1796 574 164 2730 134 402 1621 2308 3990 
3 46 494 514 973 730 1205 696 13 559 

7 1 1060 551 1587 140 892     
2 1542 1164 306 123 778     
3 1850 99 182 103 368     
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Table C.2: Server dependent processing time Pij (Cont.) 

Case 
Call 

Type 

CSR j 

1 2 3 4 5 6 7 8 9 

8 1 481 4537 146 357      
2 668 1351 3251 1078      
3 1453 185 3461 1697      

9 1 609 676 1455 1101 1049 5347    
2 1309 2040 3728 3845 1657 339    
3 51 17 31 34 89 472    

10 1 203 257 612 605 142 78 894 248 174 
2 1664 562 1913 1637 853 145 442 1607 346 
3 1501 763 1487 461 2522 971 3827 175 1690 

11 1 441 1705 268 1110 404 827    
2 221 23 117 31 153 739    
3 935 826 27 2002 1097 355    

12 1 1955 2008 3250 1096 1830 934 1838   
2 1754 4054 69 975 106 728 1966   
3 19 217 589 419 99 1192 443   

13 1 3550 191 26 1349      
2 2089 2858 516 755      
3 490 230 396 834      

14 1 118 2997 1246 537 2532     
2 160 547 531 127 1113     
3 348 146 992 289 2401     

15 1 320 1599 1428 149 1341 269 899   
2 104 573 1963 326 296 1474 61   
3 4140 583 969 677 870 1475 1395   

16 1 79 26 1389 107      
2 3536 689 108 2527      
3 97 62 159 325      

17 1 104 1218 240 607 1295 282 1330   
2 1184 2284 337 1484 4615 1180 1991   
3 3496 118 4437 444 3564 597 251   

18 1 236 623 362 198 1260 3006 163 1465  
2 2486 146 3115 206 80 2591 804 376  
3 567 681 1345 123 198 403 3006 232  

19 1 209 1153 5298 2881 1727 200    
2 947 1333 3728 1020 308 215    
3 3103 4959 1818 1723 1935 319    

20 1 793 665 1134 124      
2 1401 2396 184 219      
3 51 1804 279 141      

21 1 1241 271 30 192 912 923    
2 2402 145 1388 4018 3780 710    
3 17 729 17 27 180 236    

22 1 213 106 517 229 70 142 145 564 82 
2 768 1866 689 212 533 1059 13781 541 556 
3 2005 567 1364 273 341 1263 1756 1062 998 

23 1 559 180 295 227 1022 1219 2860   
2 1874 2594 673 2836 157 857 1157   
3 632 1417 1415 1666 1403 3431 39   
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Table C.2: Server dependent processing time Pij (Cont.) 

Case 
Call 

Type 

CSR j 

1 2 3 4 5 6 7 8 9 

24 1 456 1311 4270 456 2582 4284    
2 1292 499 970 930 1206 3925    
3 357 161 141 433 333 100    

25 1 2446 5641 694 1420 815 309 236 1206  
2 1080 1844 2369 1731 82 453 30 1723  
3 1171 1208 86 3084 374 999 719 881  

26 1 568 1188 39 1169      
2 171 819 158 345      
3 544 1818 1414 3720      

27 1 18 1233 34 740 24 1713 1046   
2 2838 2349 39 2008 742 2269 2469   
3 337 79 708 138 2734 1068 132   

28 1 1081 15 2416 1166      
2 31 1082 290 591      
3 35 205 234 570      

29 1 1826 223 868 287 3132     
2 517 246 391 354 135     
3 1766 869 1593 1855 621     

30 1 2161 1021 1235 1291 152 268    
2 140 136 444 179 121 149    
3 1719 77 29 1076 1191 3358    
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APPENDIX D. ONE-TAILED PAIR T-TEST 

Note that =, <, or > symbols are provided to indicate when one solution technique 

significantly provided equal, lower, or higher mean value than the other at the 95% 

confidence level. 

Table D.1: TFT – Results of Paired T-test for Comparing Mean of Total Flow Time 
P(T<=t)  one-tailed Compare to 

FCFS HEU LDTFT TFT CTFT HEUTFT 
FCFS = 0.000  (>) 0.000  (>) 0.000  (>) 0.000  (>) 0.000  (>) 
HEU 0.000 (<) = 0.045 (>) 0.035 (>) 0.012 (>) 0.001 (>) 
LDTFT 0.000 (<) 0.045 (<) = 0.472 (=) 0.286 (=) 0.019 (>) 
TFT 0.000 (<) 0.035 (<) 0.472 (=) = 0.221 (=) 0.004 (>) 
CTFT 0.000 (<) 0.012 (<) 0.286 (=) 0.221 (=) = 0.001 (>) 
HEUTFT 0.000 (<) 0.001 (<) 0.019 (<) 0.004 (<) 0.001 (<) = 

 

Table D.2: TFT – Results of Paired T-test for Comparing Mean of Solution Time 
P(T<=t) one-tailed Compare to 

LDTFT 
Total time 

TFT LDTFT 
best time 

HEUTFT CTFT HEU FCFS 

LDTFT total time = 0.020 (>) 0.000 (>) 0.010 (>) 0.000 (>) 0.000 (>) 0.000 (>) 
TFT 0.020 (<) = 0.368 (=) 0.438 (=) 0.000 (>) 0.000 (>) 0.000 (>) 
LDTFT best time 0.006 (<) 0.368 (=) = 0.240 (=) 0.001(>) 0.000 (>) 0.000 (>) 
HEUTFT 0.010 (<) 0.438 (=) 0.240 (=) = 0.000 (>) 0.000 (>) 0.000 (>) 
CTFT 0.000 (<) 0.000 (<) 0.001 (<) 0.000 (<) = 0.000 (>) 0.000 (>) 
HEU 0.000 (<) 0.000 (<) 0.000 (<) 0.000 (<) 0.000 (<) = = 
FCFS 0.000 (<) 0.000 (<) 0.000 (<) 0.000 (<) 0.000 (<) = = 

 

Table D.3: MFT – Results of Paired T-test for Comparing Mean of Max Flow Time 
P(T<=t)  one-tailed Compare to 

FCFS HEU MFT CMFT LDMFT HEUMFT 
FCFS = 0.000 (>) 0.000 (>) 0.000 (>) 0.000 (>) 0.000 (>) 
HEU 0.000 (<) = 0.033 (>) 0.026 (>) 0.003 (>) 0.002 (>) 
MFT 0.000 (<) 0.033 (<) = 0.358 (=) 0.047 (>) 0.015 (>) 
CMFT 0.000 (<) 0.026 (<) 0.358 (=) = 0.011 (>) 0.001 (>) 
LDMFT 0.000 (<) 0.003 (<) 0.047 (<) 0.011 (<) = 0.405 (=) 
HEUMFT 0.000 (<) 0.002 (<) 0.015 (<) 0.001 (<) 0.405 (=) = 
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Table D.4: MFT – Results of Paired T-test for Comparing Mean of Solution Time 
P(T<=t) one-tailed Compare to 

LDMFT 
total time 

MFT LDMFT 
best time 

HEUMFT CMFT HEU FCFS 

LDMFT total time = 0.001 (>) 0.002 (>) 0.008 (>) 0.000 (>) 0.000 (>) 0.000 (>) 
MFT 0.001 (<) = 0.212 (=) 0.187 (=) 0.005 (>) 0.003 (>) 0.003 (>) 
LDMFT best time 0.002 (<) 0.212 (=) = 0.222 (=) 0.013 (>) 0.008 (>) 0.008 (>) 
HEUMFT 0.008 (<) 0.187 (=) 0.222 (=) = 0.001 (>) 0.000 (>) 0.000 (>) 
CMFT 0.000 (<) 0.005 (<) 0.013 (<) 0.001 (<) = 0.000 (>) 0.000 (>) 
HEU 0.000 (<) 0.003 (<) 0.008 (<) 0.000 (<) 0.000 (<) = = 
FCFS 0.000 (<) 0.003 (<) 0.008 (<) 0.000 (<) 0.000 (<) = = 

 

Table D.5: MDCAW – Results of Paired T-test for Comparing Mean of Max Deviation 

of Cumulative Assigned Workload 
P(T<=t)  one-tailed Compare to 

FCFS HEU MDCAW CMDCAW LDMDCAW HEUMDCAW 
FCFS = 0.007 (>) 0.002 (>) 0.000 (>) 0.006 (>) 0.000 (>) 
HEU 0.007 (<) = 0.154 (=) 0.011 (>) 0.029 (>) 0.001 (>) 
MDCAW 0.002 (<) 0.154 (=) = 0.108 (=) 0.235 (=) 0.007 (>) 
CMDCAW 0.000 (<) 0.011 (<) 0.108 (=) = 0.196 (=) 0.006 (>) 
LDMDCAW 0.006 (<) 0.029 (<) 0.235 (=) 0.196 (=) = 0.081 (=) 
HEUMDCAW 0.000 (<) 0.001 (<) 0.007 (<) 0.006 (<) 0.081 (=) = 

 

Table D.6: MDCAW – Results of Paired T-test for Comparing Mean of Solution Time 
P(T<=t) one-tailed Compare to 

MDCAW LDMDCAW 
total time

LDMDCAW 
best time

HEU 
MDCAW

CMDCAW HEU FCFS

MDCAW = 0.131 (=) 0.296 (=) 0.003 (>) 0.000 (>) 0.000 (>) 0.000 (>) 
LDMDCAW  
Total time 

0.131 (=) = 0.003 (>) 0.069 (=) 0.004 (>) 0.004 (>) 0.004 (>) 

LDMDCAW 
Best time 

0.296 (=) 0.003 (<) = 0.120 (=) 0.008 (>) 0.007 (>) 0.007 (>) 

HEUMDCAW 0.003 (<) 0.069 (=) 0.120 (=) = 0.000 (>) 0.000 (>) 0.000 (>) 
CMDCAW 0.000 (<) 0.004 (<) 0.008 (<) 0.000 (<) = 0.001 (>) 0.001 (>) 
HEU 0.000 (<) 0.004 (<) 0.007 (<) 0.000 (<) 0.001 (<) = = 
FCFS 0.000 (<) 0.004 (<) 0.007 (<) 0.000 (<) 0.001 (<) = = 
 

 



www.manaraa.com

 99

APPENDIX E. DATA SETS USED IN CASE STUDY 

Table E.1: CSRs’ skill set 

CSR/Call Type 1 2 3 4 5 6 7 8 9 
1 4      4   
2    4 4    4 
3  2  2 1 3    
4 1    3  1   
5    2 1 1   1 
6    1 1    1 
7  2  2  1    
8 1    3  1   
9    2 1    2 

10    2 2 1   2 
11 3  3       
12 3   2  1    
13  2  2 1 1   2 
14 3    1  3  2 
15 1      1   
16 1 3   3 3 1   
17    2 2 1   2 
18 1 3   3 3    
19 3 2 3 2 2   1  
20  2  2 2 2  1  
21     1    2 
22 3 2  2 1 1   2 
23  2  2 1 1   2 
24  1  2 1 1   2 
25 3   3 3 3 3   
26 4 1   1 1 4   
27 1    3     
28 3 4 3 4 4 4   4 
29  1  2 1     
30 3 4    4    
31 1         
32 4 4   4  4   

 

 

 

   



www.manaraa.com

 

   

100

Table E.2: Server dependent processing time Pij 

CSR/Call Type 1 2 3 4 5 6 7 8 9 
1 152.4 143.4 142.8 141 187.8 177 118.8 220.8 168.6 
2 189.6 147.6 142.8 144.6 183.6 186.6 173.4 220.8 168.6 
3 142.8 159 142.8 119.4 174.6 201 138 220.8 168.6 
4 142.8 143.4 290.4 92.4 201 177 101.4 220.8 168.6 
5 142.8 207 142.8 189 237 238.8 138 220.8 233.4 
6 142.8 143.4 142.8 124.8 177.6 177 138 220.8 159 
7 142.8 151.8 142.8 167.4 193.8 180 138 220.8 168.6 
8 160.8 143.4 142.8 147 196.8 177 126 220.8 168.6 
9 142.8 143.4 142.8 141 219.6 177 138 220.8 153 

10 142.8 180 142.8 152.4 204 188.4 138 220.8 258 
11 156.6 143.4 142.8 141 57.6 177 129.6 220.8 168.6 
12 150.6 144.6 142.8 120.6 187.8 160.8 147.6 220.8 189.6 
13 142.8 143.4 142.8 126.6 188.4 165 138 220.8 288.6 
14 158.4 143.4 142.8 141 87 177 114 220.8 168.6 
15 153 143.4 142.8 141 187.8 177 138 220.8 168.6 
16 191.4 158.4 142.8 207.6 227.4 240 147.6 220.8 168.6 
17 142.8 143.4 142.8 152.4 217.8 177 138 220.8 115.8 
18 173.4 120.6 142.8 172.8 181.8 173.4 138 220.8 168.6 
19 161.4 126 230.4 142.8 195 177 138 273.6 168.6 
20 69.6 180.6 142.8 132.6 188.4 177 138 260.4 168.6 
21 142.8 143.4 142.8 141 233.4 177 138 220.8 168.6 
22 114 159 142.8 143.4 153 144 84 220.8 168.6 
23 142.8 184.8 142.8 186 214.8 205.8 138 220.8 210 
24 147.6 111.6 142.8 128.4 168 140.4 138 220.8 168.6 
25 144 142.8 142.8 141.6 186.6 175.8 153.6 220.8 168.6 
26 173.4 157.8 142.8 135.6 183 176.4 187.8 25.8 168.6 
27 146.4 157.8 142.8 134.4 210 177 138 220.8 168.6 
28 120.6 143.4 156.6 89.4 165 177 138 210.6 168.6 
29 142.8 90.6 142.8 129 153 177 138 220.8 168.6 
30 142.8 143.4 142.8 141 187.8 177 138 220.8 168.6 
31 234 143.4 142.8 141 187.8 177 138 220.8 168.6 
32 108.6 164.4 30.6 66.6 153 165.6 104.4 220.8 168.6 
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APPENDIX F. ABBREVIATION LIST 

 
ACD - Automated Call Distribution 
AvgF - Average Flow Time of a Call  
AvgN - Average Number of Calls 
AvgW - Average Waiting Time  for a call 
BB - Branch and Bound  
BC - Branch and Cut  
BP - Branch and Price  
CB - Cut and Branch  
CLT - Central Limit Theorem  
CMDCAW - Cutting Plane Reformulation of Problem MDCAW  
CMFT - Cutting Plane Reformulation of Problem MFT 
CMS - Contact Management System  
CR - Continuous Relaxation  
CSRs - Customer Service Representatives  
CTFT - Cutting Plane Reformulation of Problem TFT 
CTI - Computer Telephony Integration  
DFS - Depth-First Search  
FCFS - First Come First Served  
FCPA - Fractional Cutting Plane Algorithm  
ILP - Integer Linear Programming  
INLP - Integer Nonlinear Programming  
IP - Integer Programming  
IVR - Interactive Voice Response  
JIT - Just In Time 
LB - Lower Bound  
LD - Lagrangian Duality  
LDMDCAW - Lagrangian Dual of Problem MDCAW  
LDMFT - Lagrangian Dual of Problem MFT  
LDTFT - Lagrangian Dual of Problem TFT  
LP - Linear Programming  
LR - Lagrangian Relaxation  
Maxcldiv - Maximum Deviation of Assigned Workload 
MaxF - Maximum Flow Time of a Call  
MaxN - Maximum Number of calls  
MaxW - Maximum Waiting Time for a Call  
MDCAW - Problem of Maximum Deviation of Cumulative Assigned Workload  
MED - Minimum-Expected-Delay  
MFT - Problem of Maximum Flow Time  
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MGAP - Multiple-choice General Assignment Problem  
PBX - Private Branch Exchange  
RMDCAW - Reformulated Problem MDCAW  
RMFT - Reformulated Problem MFT  
ROMDCAW - Re-optimization of Problem MDCAW 
ROMFT - Re-optimization of Problem MFT 
ROTFT - Re-optimization of Problem TFT 
RTFT - Reformulated Problem TFT  
SBR - Skill Based Routing  
SL - Service Level 
SPT - Short Processing Time  
TFT - Problem of Total Flow Time  
UB - Upper Bound 
ULS - Uncapacitated Lot Sizing  
VRU - Voice Response Unit 
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